初中数学应用题

网上科普有关“初中数学应用题”话题很是火热,小编也是针对初中数学应用题寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。某厂向工商银行申请...

网上科普有关“初中数学应用题”话题很是火热,小编也是针对初中数学应用题寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

某厂向工商银行申请甲、乙两种贷款,共计20万元,每年需付利息2.7万元.甲种贷款年利率为12%,乙种贷款年利率为14%.甲、乙两种贷款的金额各多少?

某商贩以每件135元售出两件衣服,按成本计算,第一件盈利25%,第二件亏损25%.那么该商贩的这笔生意赚(或亏)了多少?

一家公司向银行贷款1200万元,年利率为10%(不计复利).用这笔贷款购买一套进口设备,生产某商品,每箱商品的生产成本为100元.销售价为150元,综合税率为售价的10%,预计每年能产销80000箱.若用所得纯利润偿还贷款本利,需要几年才能还清?

某人储蓄100元钱,当时一年息为7.47%,三年息为8.28%(均不计复利).甲种存法:先存一年,到期后连本带利再存一年,到期后再连本带利存一年;乙种存法:存三年;哪种存法盈利多?多多少?

两个班的学生72人去工地参加挖土和运土的义务劳动,如果每人每天平均挖土3方或运土5方,那么应怎样分配挖土和运土的人数,正好使挖出的土及时运走?

某车间有工人42名,每人每分能生产2个螺栓或3个螺帽,应分配多少工人生产螺栓,多少工人生产螺帽,才能使生产出的螺栓和螺帽恰好配套(一个螺栓配两个螺帽)?

某厂三个车间的工人数分别为26,39,65,现在招来40个合同工,应如何分配,才能使各车间的工人的比例与原来一样?

有盐的质量分数为15%的盐水20千克,要使盐的质量分数提高到20%,需要加盐多少千克?

9、有水的质量分数为5%的盐水60克,应加水多少克才能得到盐的质量分数10%的盐?

10、从盐的质量分数为 12.5%的盐水40千克里蒸发掉多少千克的水后,可以制成盐的质量分数为20%的盐水?

11、要得到盐的质量分数为16%的盐水1000克,需要盐的质量分数为10%和25%的盐水各多少克?

12、在盐的质量分数为20%的盐水中放入20克盐,得到盐的质量分数为25%的盐水.原有的盐水多少克?

13、要配制纯硫酸的质量分数为10%的硫酸1000千克,已有纯硫酸的质量分数为60%的硫酸85千克,还需要纯硫酸的质量分数为98%的硫酸和水各多少千克?

14、某工人原计划在限定的时间内加工一批零件,如果每时加工10个零件,就可以超额完成3个;如果每时加工11个零件,就可以提前1时完成,问这批零件有多少个?按原计划需多少时间完成

15、甲、乙两人一起生产一批零件,经20天完成任务,但乙曾在中途请假5天已知甲每天比乙多做3个,于是乙做的零件恰好是甲的一半,求这批零件的总件数.

16、小明做一批零件需12天完成.做了2天后,小明采用先进技术,工作效率提高了一倍,小明共用了多少时间完成任务?

17、甲、乙、丙三人单独完成同一件工作,分别需要10天、12天、15天.

如果三人合作,共同完成这一任务需要几天?

如果乙先做3天,然后甲、丙同时加入,那么完成这件工作共需要多少天?

甲先做,然后乙、丙加入共同完成,前后共用了7天,问甲先做了几天?

18、一水池有甲、乙、丙三个水管,甲是进水管,乙、丙是排水管.甲独开需6时注满一池水,乙独开需8时放完一池水.在空水池内先开甲水管3时,然后同时开放乙、丙两水管,经2时24分,水池内的水全部放完.问单独开丙管放完一水池水需多少时间?

19、甲、乙两人练习短距离赛跑,甲每秒7米,乙每秒6.5米.

若甲让乙先跑5米,则甲经过几秒可追及乙?

若甲让乙先跑1秒,则甲经过几秒可追及乙?

20、一位通讯员需要在规定时间内把信件送到某地.如果他骑自行车每时行15千米,结果早到了24分;如果每时行12千米,就要迟到30分,问原定的时间是多少?他去某地的路程有多远

21、 甲、乙两人于上午8:00分别从一条公路的A,B两地相向而行,到8:30两人之间路程缩短到10千米,到10:20两人之间的路程增大到44千米,求A,B的路程.

22、甲、乙两列火车,甲车长200米,乙车长280米,在平行的轨道上相向而行.已知两车车头相遇到车尾相离共需18秒,甲、乙两车速度之比是5:3,求两车的速度.

23、已知一铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分时间,整列火车完全在桥上时间为40秒.求火车的长度和速度.

甲、乙两人从相距18千米的两地同时出发,相向而行.经1 时相遇.如果甲比乙先出发 时.那么在乙出发后经1 时两人相遇.求甲、乙两人的速度

某人骑自行车在平路上每时行12千米,上坡路每时行8千米,下坡路每时行15千米.已知一段路中的平路长28千米,某人骑车去时用了5时,回来时用了4时39分,问这段路的上坡和下坡各是多少千米?

26、一个两位数,十位上的数字是个位上的数字的2倍.如果交换十位数字与个位数字的位置,那么所得的数就比原数小36,求原来的两位数.

某厂要在5天内完成18台拖拉机的装配任务,甲车间每天能装配2台,乙车间每天能装配3台,应如何分配两车间的装配任务,使两车间的工作天数都是整天数?

红旗机械厂生产甲、乙两种机器,甲种机器每台销售价为4万元,乙种机器每台销售价为5万元。

(1) 为使销售额达到120万(2) 元,(3) 若两种机器要生产,(4) 则应安排生产甲、乙两种机器各多少台?

(5) 若市场对甲种机器的需求量不(6) 超过20台,(7) 对乙种机器的需求量不(8) 超过15台,(9) 工厂为确保120万(10) 元销售额,(11) 应如何安排生产计划?

一个三位数,百位上的数与其后的二位数之和为58.若把百位上的数移作个位上的数,并把原来十位和个位上的数顺次升为百位和个位上的数,则新的三位数比原数大306.求原来这个三位数。

一个三位数,十位数字小于2,百位数字与个位数字之和为14,若把百位数字与个位数字互换位置后,则新数比原数大396,求原来这个三位数.

某仓库有甲种货物20件和乙种货物29件要运往百货公司.每辆大卡车每次可运甲种货物5件或运甲种货物4件和乙种货物3件;每辆小卡车每次可运乙种货物10件或运甲种货物2件和乙种货物5件.每辆大卡车每次的远费为300元,每辆小卡车每次的远费为180元.

(12) 用大卡车运甲种货物,(13) 小卡车运乙种货物,(14) 需大、小卡车各几辆次?

(15) 大、小卡车每次都同(16) 时装运甲、乙两种货物,(17) 需大、小卡车各几辆次?

(18) (1),(19) (2)两种运输方案哪一种的运输费用省,(20) 较省一种的运输费用是多少?

某厂生产A,B两种不同型号的机器,按原生产计划安排,A型机的生产成本为每台3万元,B型机的生产成本为每台2万元,完成全部计划的总成本为69万元.进一步核算发现,若把原计划中A型机的产量增加5台,B型机的产量减少5台,则A型机的成本将降为每台2.5万元,B型机的成本升为每台2.1万远,生产的总成本为64.7万元.求原计划中A,B两种机器共生产多少台.

某企业原计划今年的利润比管理费支出多32万元.奖励办法是:奖金总额=实际利润超过计划数部分的40%+管理费支出少于计划部分的60%.经测算如果实际利润达到60万元,管理费支出减为12万元,则职工的年终奖金总额为7万元.现想使职工的年终奖金总额达到9万元,在管理费支出控制在12.5万元的情况下,全年实际利润应达到多少万元?

在公路两旁植树,每隔3米一棵,还剩3棵;每隔2.5米一棵,还缺77棵,求公路长.

一玩具公司在每天工作时间为10时的机器上制造玩具卫兵和玩具骑兵,做一个玩具卫兵需8秒时间和8克金属,做一个玩具骑兵需6秒和16克金属,每天供给的金属材料为64千克.做一个玩具卫兵利润为0.05元,做一个玩具骑兵利润为0.06元.问每种玩具各做多少个恰好使每天供给的金属材料用完?这样安排生产,每天的利润是多少?

甲、乙两地相距10千米,A,B,C三人从甲地到乙地,A,B二人步行速度为每时4千米,C骑摩托车速度是每时40千米.出发时,C先用摩托车带A,当C送A一程后,A下车步行,C即返回接步行中的B,结果3人同时达到乙地.求A,B,C三人从甲地到乙地共用了多少时间?

甲、乙、丙三人同时从A地出发去B地,丙先步行,甲骑车带乙到途中某处,乙下车步行去B地,甲骑车返回遇着丙,带丙去B地,结果三人同时到达B地,已知步行每小时4千米,骑车每小时12千米,A、B两地相距90千米。问乙步行了多少千米?

生活中的数学.(一道数学应用题)

解:

设张某平均每月发m条短信,每月话费为y元。

则第一种活动:(1)m<=140,则该月只需交话费y1=0.3*140=42元;

(2)m>140,则y2=42+0.1*(m-140)。

第二种活动:y3=(0.3*140+0.1*m)*0.8

如果第二种方式划算,则(1)m<=140时,y1>y3;

(2)m>140时,y2>y3。

解得m<105或m>280。

所以,当张某的短信条数少于105或多于280时选择第二种方式更划算。

随着优惠形式的多样化,“可选择性优惠”逐渐被越来越多的经营者采用。一次,我去“物美”超市购物,一块醒目的牌子吸引了我,上面说购买茶壶、茶杯可以优惠,这似乎很少见。更奇怪的是,居然有两种优惠方法:(1)卖一送一(即买一只茶壶送一只茶杯);(2)打九折(即按购买总价的90%

付款)。其下还有前提条件是:购买茶壶3只以上(茶壶20元/个,茶杯5元/个)。由此,我不禁想到:这两种优惠办法有区别吗?到底哪种更便宜呢?我便很自然的联想到了函数关系式,决心应用所学的函数知识,运用解析法将此问题解决。

我在纸上写道:

设某顾客买茶杯x只,付款y元,(x>3且x∈N),则

用第一种方法付款y1=4×20+(x-4)×5=5x+60;

用第二种方法付款y2=(20×4+5x)×90%=4.5x+72.

接着比较y1y2的相对大小.

设d=y1-y2=5x+60-(4.5x+72)=0.5x-12.

然后便要进行讨论:

当d>0时,0.5x-12>0,即x>24;

当d=0时,x=24;

当d<0时,x<24.

综上所述,当所购茶杯多于24只时,法(2)省钱;恰好购买24只时,两种方法价格相等;购买只数在4—23之间时,法(1)便宜.

可见,利用一元一次函数来指导购物,即锻炼了数学头脑、发散了思维,又节省了钱财、杜绝了浪费,真是一举两得啊!

在企业进行诸如建筑、饲养、造林绿化、产品制造及其他大规模生产时,

其利润随投资的变化关系一般可用二次函数表示。企业经营者经常依据这方面的知识预计企业发展和项目开发的前景。他们可通过投资和利润间的二次函数关系预测企业未来的效益,从而判断企业经济效益是否得到提高、企业是否有被兼并的危险、项目有无开发前景等问题。常用方法有:求函数最值、某单调区间上最值及某自变量对应的函数值

在山林绿化中,

须在山坡上等距离植树,且山坡上两树之间的距离投影到平地上须同平地树木间距保持一致。(如左图)因此,林业人员在植树前,要计算出山坡上两树之间的距离。这便要用到锐角三角函数的知识。

如右图,令C=90

,B=α

,平地距为d,山坡距为r,则secα=secB

=AB/CB=r/d.

∴r=secα×d这个问题至此便迎刃而解了。

1、“白猫”洗衣粉桶

“白猫”洗衣粉桶的形状是等边圆柱(如右图所示),

若容积一定且底面与侧面厚度一样,问高与底面半径是

什么关系时用料最省(即表面积最小)?

分析:容积一定=>лr

h=V(定值)

=>S=2лr

+2лrh=2л(r

+rh)=

2л(r

+rh/2+rh/2)

≥2л3

(r

h)

/4

=3

2лV

(当且仅当r

=rh/2=>h=2r时取等号),

∴应设计为h=d的等边圆柱体.

2、“易拉罐”问题

圆柱体上下第半径为R,高为h,若体积为定值V,且上下底

厚度为侧面厚度的二倍,问高与底面半径是什么关系时用料最

省(即表面积最小)?

分析:应用均值定理,同理可得h=2d(计算过程请读者自己

写出,本文从略)∴应设计为h=2d的圆柱体.

关于“初中数学应用题”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

本文来自作者[冰薇]投稿,不代表赤玉坊立场,如若转载,请注明出处:https://www68.cn/bkqs/202412-9845.html

(7)

文章推荐

发表回复

本站作者后才能评论

评论列表(4条)

  • 冰薇
    冰薇 2024年12月20日

    我是赤玉坊的签约作者“冰薇”!

  • 冰薇
    冰薇 2024年12月20日

    希望本篇文章《初中数学应用题》能对你有所帮助!

  • 冰薇
    冰薇 2024年12月20日

    本站[赤玉坊]内容主要涵盖:国足,欧洲杯,世界杯,篮球,欧冠,亚冠,英超,足球,综合体育

  • 冰薇
    冰薇 2024年12月20日

    本文概览:网上科普有关“初中数学应用题”话题很是火热,小编也是针对初中数学应用题寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。某厂向工商银行申请...

    联系我们

    邮件:赤玉坊@sina.com

    工作时间:周一至周五,9:30-18:30,节假日休息

    关注我们