初一数学趣味题的题目附答案

网上有关“初一数学趣味题的题目附答案”话题很是火热,小编也是针对初一数学趣味题的题目附答案寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您...

网上有关“初一数学趣味题的题目附答案”话题很是火热,小编也是针对初一数学趣味题的题目附答案寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

哥哥和弟弟去买了很多草莓,路上哥哥吃了2个,弟弟吃了5个。回家后,弟弟对爸爸妈妈说:“我在路上已经吃了4个,哥哥吃了2个。现在我们把剩下的草莓四个人平分。但是我特别喜欢吃草莓,所以我总共吃的数目要比哥哥多两倍!”爸爸妈妈答应了。但哥哥想了一会,说“不行!依你这样分的话,爸爸妈妈就吃不到草莓了!”这是为什么?

答案:

设平均分的每份是X

则X+4=2(X+2),X=0

所以爸爸妈妈就吃不到了.

至于为什么不是X+5...因为弟弟撒谎就是要按照X+4来分,才会多分点

有27颗珍珠,其中一颗是假的,但外观和真的一样,只是比真的珍珠轻一点.问:最少用天平称几次(不用砝码),就一定可以把假的珍珠找出来?(也要有过程)

有一水库,在单位时间内有一定量的水流进,同时也向外放水.按现在的放水量,水库中的水可使用40天.因最近库区降雨,使流入水库的水量增加20%,如果放水量也增加10%,那么仍可使用40天.问:如果按照原来的放水量放水,可使用多少天?(当然也要有过程) 2 答案:

3次

第一次把27颗珍珠分成3等份,取其中2份放天平两端称量,如果天平偏斜,则考虑轻的那9颗珍珠,如果不偏斜,则考虑没有称量的那9颗;同理,将这9颗珍珠再分成3等份,,取其中2份放天平两端称量,再次得到3颗"可疑"的珍珠,取出两颗称量,如果天平偏斜,则轻的是次品~否则没称量的是次品.

20天

设水库原有水为X,每天放出水a,放进水b,则根据题意可得: X=40(a-b) X=40(1.1a-1.2b) (两者同时成立) 所以解得 X=20a 即可以不进水只放20天.

1.有人编写了一个程序, 从1开始, 交替做乘法或加法, (第一次可以是加法,也可以是乘法), 每次加法, 将上次运算结果加2或是加3;每次乘法,将上次运算结果乘2或乘3, 例如30, 可以这样得到: 1 +3 =4*2=8+2=10*3=30,请问怎样可以得到:2的100次+2的97次-2

解答:1+3=4+2=2的3次-2=2的3次+2-2=(2的3次+2-2)*2=……==2的100次+2的97次-2的97次=2的100次+2的97次-2的97次+2=2的100次+2的97次-2的97次+2+2=……=2的100次+2的97次-2

2.下诗出于清朝数学家徐子云的著作,请算出诗中有多少僧人?

巍巍古寺在云中,不知寺内多少僧。

三百六十四只碗,看看用尽不差争。

三人共食一只碗,四人共吃一碗羹。

请问先生明算者,算来寺内几多僧?

解答:三人共食一只碗:则吃饭时一人用三分之一个碗,

四人共吃一碗羹:则吃羹时一人用四分之一个碗,

两项合计,则每人用1/3+1/4=7/12个碗,

设共有和尚X人,依题意得:

7/12X=364

解之得,X=624

3.两个男孩各骑一辆自行车,从相距2O英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1O英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里?

解答:每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2O英里距离的中点。苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。

4.《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。原题如下: 令有雉(鸡)兔同笼,上有三十五头,下有九十四足。问雄、兔各几何?

解答:设x为雉数,y为兔数,则有

x+y=b, 2x+4y=a

解之得:y=b/2-a,

x=a-(b/2-a)

根据这组公式很容易得出原题的答案:兔12只,雉22只。

5.我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。

经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。 每间住了人的客房每日所需服务、维修等项支出共计40元。

问题:我们该如何定价才能赚最多的钱?

解答:日租金360元。

虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来360*50=18000元的收入; 扣除50间房的支出40*50=2000元,每日净赚16000元。而客满时净利润只有160*80-40*80=9600元。

6. 数学家维纳的年龄:我今年岁数的立方是个四位数,岁数的四次方是个六位数,这两个数,刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,维纳的年龄是多少?

解答:设维纳的年龄是x,首先岁数的立方是四位数,这确定了一个范围。10的立方是1000,20的立方是8000,21的立方是9261,是四位数;22的立方是10648;所以10=<x<=21 x四次方是个六位数,10的四次方是10000,离六位数差远啦,15的四次方是50625还不是六位数,17的四次方是83521也不是六位数。18的四次方是104976是六位数。20的四次方是160000;21的四次方是194481; 综合上述,得18=<x<=21,那只可能是18,19,20,21四个数中的一个数;因为这两个数刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,四位数和六位数正好用了十个数字,所以四位数和六位数中没有重复数字,现在来一一验证,20的立方是80000,有重复;21的四次方是194481,也有重复;19的四次方是130321;也有重复;18的立方是5832,18的四次方是104976,都没有重复。 所以,维纳的年龄应是18。

7.把1,2,3,4……1986,1987这1987个自然数均匀排成一个大圆圈,从1开始数:隔过1划2,3;隔过4划掉5,6,这样每隔一个数划掉两个数,转圈划下去,问:最后剩下哪个数。

解答:663

8.在一幅长90厘米,宽40厘米的风景画的四周外围向上一条宽度相同的金色纸边,制成一幅挂图,如果要求风景画的面积是整个挂图面积的百分之72,那么金色纸边的宽应为多少?

解答:根据题意有(90+2X)(40+2X)*72%=90*40

(90+2X)(40+2X)=3600/0.72

3600+180X+80X+4X2=5000

4X2+260X-1400=0

(4X-20)(X+70)=0

得 4x-20=0 X+70=0

4*x=20 X=5

X=-70 不成立

所以X=5CM

9.用黑白两种颜色的皮块缝制而成的足球,黑色皮块是正五边形,白色皮块是正六边形,若一个球上共有黑白皮块32块,请计算,黑色皮块和白色皮块的块数

解答:等量关系:

白色皮块中与黑色皮块中共用的边数=黑色皮块中与白色皮块共用的边数

设:有白色皮块x

3x=5(32-x)

解得 x=20

10.抽屉中有十只相同的黑袜子和十只相同的白袜子,假若你在黑暗中打开抽屉,伸手拿出袜子,请问至少要拿出几只袜子,才能确定拿到了一双?

解答:3

11.小赵,小钱,小孙,小李4人讨论一场足球赛决赛究竟是哪个队夺冠。小赵说:“D对必败,而C队能胜。”小钱说:“A队,C队胜于B队败会同时出现。”小孙说:“A队,B队C队都能胜。”小李说:“A队败,C队,D队胜的局面明显。”

他们的话中已说中了哪个队取胜,请问你猜对究竟哪个队夺冠吗?

解答:小赵,小钱,小孙,小李4人讨论一场足球赛决赛究竟是哪个队夺冠。小赵说:“D对必败,而C队能胜。”小钱说:“A队,C队胜与B队败会同时出现。”小孙说:“A队,B队C队都能胜。”小李说:“A队败,C队,D队胜的局面明显。”

小赵的话说明 D队败

小钱的话说明 B队败

小孙的话说明 D队败

小李的话说明 A队败

所以,C队胜利

12.如果长度为a,b,c的三条线段能够成三角形,那麽线段根号a,根号b,根号c是否能够成三角形?

如果一定能构成或一定不能构成,请证明

如果不一定能够,请举例说明.

解答:可以。

不妨假设a最小,c最大,那么abc构成三角形的充要条件就是a+b>c;

这时√a+√b与√c比较,其实就是a+b+2√ab与c比较(两边平方),a+b已经大于c了,那么显然可以构成三角形。

13.有一位农民遇见魔鬼,魔鬼说:"我有一个主意,可以让你发财!只要你从我身后这座桥走过去,你的钱就会增加一倍,走回来又会增加一倍,每过一次桥,你的钱都能增加一倍,不过你必须保证每次在你的钱数加倍后要给我a个钢板,农民大喜,马上过桥,三次过桥后,口袋刚好只有a个钢板,付给魔鬼,分文不剩,请有含a的单项式表示农民最初口袋里的钢板数。

解答:设最初钱数为x

2[2(2x-a)-a]-a=0

解方程得x=7a/8

14.三个同学放学回家,途中见到一辆**汽车,等他们再往前走时,听说那辆车撞伤一位老人后竟然逃之夭夭.可是谁也没记下这辆汽车的车牌号.警察询问这三个中学生时,他们都说车牌号是一个四位数.其中一个记得这个号码的前两位相同,另一个记得这个号码的后两位数字相同,第三个记得这个四位数恰好是完全平方数,你能确定这辆肇事汽车的车牌号吗

解答:四位数可以表示成

a×1000+a×100+b×10+b

=a×1100+b×11

=11×(a×100+b)

因为a×100+b必须被11整除,所以a+b=11,带入上式得

四位数=11×(a×100+(11-a))

=11×(a×99+11)

=11×11×(9a+1)

只要9a+1是完全平方数就行了。

由a=2、3、4、5、6、7、8、9验证得,

9a+1=19、28、27、46、55、64、73。

所以只有a=7一个解;b=4。

因此四位数是7744=11^2×8^2=88×88

15.已知1加3等于4等于2的2次方,1加3加5等于9等于3的2次方,1加3加5加7=16等于4的2次方,1加3加5加7加9等于25等于5的2次方,等......

<1>仿照上例,计算1加2加3加5加7加...加99等于?

<2>根据上面规律,请用自然数n(n大于等于1)表示一般规律。

解答:<1>1+3+5+...+99=50的平方

<2>1+3+5+...+n=[(n-1)/2+1]的平方

16.有一次,一只猫抓了20只老鼠,排成一列。猫宣布了它的决定:首先将站在奇数位上的老鼠吃掉,接着将剩下的老师重新按1、2、3、4…编号,再吃掉所有站在奇数位上的老鼠。如此重复,最后剩下的一只老鼠将被放生。一只聪明的老鼠听了,马上选了一个位置,最后剩下的果然是它,猫将它放走了!

你知道这只聪明的小老鼠站的是第几个位置吗?

解答:排在第16个。第1次能被2整除的剩下了,第2次能被4(2的平方)整除的剩下了,第3次能被8(2的3次方)整除的剩下了,第4次能被16(2的4次方)整除的剩下了,所以只有第16个不会被吃掉。

17.1/(1*2*3)+1/(2*3*4)+1/(3*4*5)+…+1/(98*99*100)

解答:1/(1*2*3)+1/(2*3*4)+1/(3*4*5)+…+1/(98*99*100)

=(1-1/2-1/3)+(1/2-1/3-1/4)+(1/3-1/4-1/5)+......1/98-1/99-1/100

=1-1/100

=99/100

备注:1/(1*2*3)=1-1/2-1/3

18.小伟和小明交流暑假中的活动情况,小伟说:“我参加了科技夏令营,外出一个星期,这七天的日期数之和是84,你知道我是几号出发的吗?”小明说:“我假期到舅舅家住了七天,日期数的和再加月份数也是84,你能猜出我是几月几号回家的吗?

解答:第一题:设出发那天为X号

X+X+1+X+2+X+3+X+4+X+5+X+6=84

X=9

小伟是9号出发的。

第二题:因为是暑假里的活动,所以只能是7或者8月份

设回来那天为X号

列示为

7+X+X-1+X-2+X-3+X-4+X-5+X-6=84

或者

8+X+X-1+X-2+X-3+X-4+X-5+X-6=84

第一式解出X=14

第二式结果不为整数

所以只能是7月14号到家

19.某校初一有甲、乙、丙三个班,甲班比乙班多4个女生,乙班比丙班多1个女生,如果将甲班的第一组同学调入乙班,同时将乙班的第一组同学调入丙班,同时将丙班的第一组同学调入甲班,则三个班的女生人数恰好相等。已知丙班第一组有2名女生,问甲、乙两班第一组各有多少女生?

解答:设甲乙两班第一组的女生分别有m和n个 丙班女生有x个乙班就有x+1个,甲班就有x+5个 平均x+2个 (利用改变量来计算)丙班:-2+n=(x+2)-x

甲班:+2-m=(x+2)-(x+5) 可以得出 m=5 n=4

20.有一水库,在单位时间内有一定量的水流量,同时也向外放水。按现在的放水量,水库中的水可使用40天。因最近库区降雨,使流入水库的水量增加20%,如果放水量也增加10%,那么仍可使用40天。问:如果按原来的放水量放水,可使用多少天?

解答: 设水库总水量为x 一天的进水量和出水量分别为m和n

则有x/(n-m)=40=x/[n(1+10%)-m(1+20%)] 要求x/[n-m(1+20%)]

可以先化简得n=2m x=40m 带入第二个式子即可得到x=50天

21.某宾馆先把甲乙两种空调的温度设订为1度,结果甲种空调比乙种空调每天多节电27度再对乙种空调进行清洗设备,使得乙种空调每天的总节电量是只将温度调高1度后的节电量的1.1倍而甲种空调的节电量不变这样两种空调每天共节电405度求只将温度条调高1度后两种空调每天共节电多少度?

解答:设只将温度调高1度后,甲乙两种空调每天各节电X,Y度

X-Y=27,

X+1.1Y=405

X=207

Y=180

甲乙两种空调每天各节电207,180度.

22.红棉村有1000公顷荒山,绿化率达80%,300公顷良田不需要绿化,今年X公顷河坡地植树绿化率达20%,这样红棉村所有土地的绿化率就达到60%,河坡地共有多少公顷?

解答:(x*20%+1000*80%)/(1000+300+x)=60%

(0.2*x+800)/(1300+x)=0.6

0.2*x+800=780+0.6*x

x=50公顷

23.一张纸厚0.06厘米,地球到月球的距离是3.85*10^5千米.

小明说,如果将这张纸裁成两等份,把裁成两等份的纸摞起来,再裁两等份,如果重复下去,所有纸的高度大于月球到地球的距离.

小刚说,我不信小明的说法.

小明的说法是对的吗?为什么?

解答:裁40次就高于3.85*10^5千米

2^40*0.06/100000=6.597*10^5千米

小明的说法是对,只是这张纸一定要够大,要不能裁了几次就裁不了

24.有27颗珍珠,其中一颗是假的,但外观和真的一样,只是比真的珍珠轻一点.问:最少用天平称几次(不用砝码),就一定可以把假的珍珠找出来?

解答:3次

第一次把27颗珍珠分成3等份,取其中2份放天平两端称量,如果天平偏斜,则考虑轻的那9颗珍珠,如果不偏斜,则考虑没有称量的那9颗;同理,将这9颗珍珠再分成3等份,,取其中2份放天平两端称量,再次得到3颗"可疑"的珍珠,取出两颗称量,如果天平偏斜,则轻的是次品~否则没称量的是次品

25.埃及同中国一样,也是世界上著名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为1的分数,例如用1/3+1/15表示2/5,用1/4+1/7+1/28来表示3/7等等,现在用90个埃及分子1/2,1/3,1/4,1/5,......。1/90。1/91,其中是否再10个数,加上正负号后使它们的和为-1,若存在,请写出这10个数,若不存在,请说明理由。

解答:一解:

-1=-1/5-1/6-1/8-1/9-1/10-1/12-1/15-1/18-1/20-1/24

二解:

1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10=1-1/10

所以:

1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90+1/10=1

即:

-1/2-1/6-1/12-1/20-1/30-1/42-1/56-1/72-1/90-1/10=-1

1、 两个男孩各骑一辆自行车,从相距2O英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1O英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里?

答案

每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2O英里距离的中点。苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。

许多人试图用复杂的方法求解这道题目。他们计算苍蝇在两辆自行车车把之间的第一次路程,然后是返回的路程,依此类推,算出那些越来越短的路程。但这将涉及所谓无穷级数求和,这是非常复杂的高等数学。据说,在一次鸡尾酒会上,有人向约翰?冯·诺伊曼(John von Neumann, 1903~1957,20世纪最伟大的数学家之一。)提出这个问题,他思索片刻便给出正确答案。提问者显得有点沮丧,他解释说,绝大多数数学家总是忽略能解决这个问题的简单方法,而去采用无穷级数求和的复杂方法。

冯·诺伊曼脸上露出惊奇的神色。“可是,我用的是无穷级数求和的方法.”他解释道

2、 有位渔夫,头戴一顶大草帽,坐在划艇上在一条河中钓鱼。河水的流动速度是每小时3英里,他的划艇以同样的速度顺流而下。“我得向上游划行几英里,”他自言自语道,“这里的鱼儿不愿上钩!”

正当他开始向上游划行的时候,一阵风把他的草帽吹落到船旁的水中。但是,我们这位渔夫并没有注意到他的草帽丢了,仍然向上游划行。直到他划行到船与草帽相距5英里的时候,他才发觉这一点。于是他立即掉转船头,向下游划去,终于追上了他那顶在水中漂流的草帽。

在静水中,渔夫划行的速度总是每小时5英里。在他向上游或下游划行时,一直保持这个速度不变。当然,这并不是他相对于河岸的速度。例如,当他以每小时5英里的速度向上游划行时,河水将以每小时3英里的速度把他向下游拖去,因此,他相对于河岸的速度仅是每小时2英里;当他向下游划行时,他的划行速度与河水的流动速度将共同作用,使得他相对于河岸的速度为每小时8英里。

如果渔夫是在下午2时丢失草帽的,那么他找回草帽是在什么时候?

答案

由于河水的流动速度对划艇和草帽产生同样的影响,所以在求解这道趣题的时候可以对河水的流动速度完全不予考虑。虽然是河水在流动而河岸保持不动,但是我们可以设想是河水完全静止而河岸在移动。就我们所关心的划艇与草帽来说,这种设想和上述情况毫无无差别。

既然渔夫离开草帽后划行了5英里,那么,他当然是又向回划行了5英里,回到草帽那儿。因此,相对于河水来说,他总共划行了10英里。渔夫相对于河水的划行速度为每小时5英里,所以他一定是总共花了2小时划完这10英里。于是,他在下午4时找回了他那顶落水的草帽。

这种情况同计算地球表面上物体的速度和距离的情况相类似。地球虽然旋转着穿越太空,但是这种运动对它表面上的一切物体产生同样的效应,因此对于绝大多数速度和距离的问题,地球的这种运动可以完全不予考虑.

3、 一架飞机从A城飞往B城,然后返回A城。在无风的情况下,它整个往返飞行的平均地速(相对于地面的速度)为每小时100英里。假设沿着从A城到B城的方向笔直地刮着一股持续的大风。如果在飞机往返飞行的整个过程中发动机的速度同往常完全一样,这股风将对飞机往返飞行的平均地速有何影响?

怀特先生论证道:“这股风根本不会影响平均地速。在飞机从A城飞往B城的过程中,大风将加快飞机的速度,但在返回的过程中大风将以相等的数量减缓飞机的速度。”“这似乎言之有理,”布朗先生表示赞同,“但是,假如风速是每小时l00英里。飞机将以每小时200英里的速度从A城飞往B城,但它返回时的速度将是零!飞机根本不能飞回来!”你能解释这似乎矛盾的现象吗?

答案

怀特先生说,这股风在一个方向上给飞机速度的增加量等于在另一个方向上给飞机速度的减少量。这是对的。但是,他说这股风对飞机整个往返飞行的平均地速不发生影响,这就错了。

怀特先生的失误在于:他没有考虑飞机分别在这两种速度下所用的时间。

逆风的回程飞行所用的时间,要比顺风的去程飞行所用的时间长得多。其结果是,地速被减缓了的飞行过程要花费更多的时间,因而往返飞行的平均地速要低于无风时的情况。

风越大,平均地速降低得越厉害。当风速等于或超过飞机的速度时,往返飞行的平均地速变为零,因为飞机不能往回飞了。

4、 《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。原题如下: 令有雉(鸡)兔同笼,上有三十五头,下有九十四足。

问雄、兔各几何?

原书的解法是;设头数是a,足数是b。则b/2-a是兔数,a-(b/2-a)是雉数。这个解法确实是奇妙的。原书在解这个问题时,很可能是采用了方程的方法。

设x为雉数,y为兔数,则有

x+y=b, 2x+4y=a

解之得

y=b/2-a,

x=a-(b/2-a)

根据这组公式很容易得出原题的答案:兔12只,雉22只。

5、我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。

经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。 每间住了人的客房每日所需服务、维修等项支出共计40元。

问题:我们该如何定价才能赚最多的钱?

答案:日租金360元。

虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来360*50=18000元的收入; 扣除50间房的支出40*50=2000元,每日净赚16000元。而客满时净利润只有160*80-40*80=9600元。

当然,所谓“经调查得知”的行情实乃本人杜撰,据此入市,风险自担。

6 数学家维纳的年龄,全题如下: 我今年岁数的立方是个四位数,岁数的四次方是个六位数,这两个数,刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,维纳的年龄是多少? 解答:咋一看,这道题很难,其实不然。设维纳的年龄是x,首先岁数的立方是四位数,这确定了一个范围。10的立方是1000,20的立方是8000,21的立方是9261,是四位数;22的立方是10648;所以10=<x<=21 x四次方是个六位数,10的四次方是10000,离六位数差远啦,15的四次方是50625还不是六位数,17的四次方是83521也不是六位数。18的四次方是104976是六位数。20的四次方是160000;21的四次方是194481; 综合上述,得18=<x<=21,那只可能是18,19,20,21四个数中的一个数;因为这两个数刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,四位数和六位数正好用了十个数字,所以四位数和六位数中没有重复数字,现在来一一验证,20的立方是80000,有重复;21的四次方是194481,也有重复;19的四次方是130321;也有重复;18的立方是5832,18的四次方是104976,都没有重复。 所以,维纳的年龄应是18。

把1,2,3,4……1986,1987这1987个自然数均匀排成一个大圆圈,从1开始数:隔过1划2,3;隔过4划掉5,6,这样每隔一个数划掉两个数,转圈划下去,问:最后剩下哪个数。

答案:663

已知1加3等于4等于2的2次方,1加3加5等于9等于3的2次方,1加3加5加7=16等于4的2次方,1加3加5加7加9等于25等于5的2次方,等......

<1>仿照上例,计算1加2加3加5加7加...加99等于?

<2>根据上面规律,请用自然数n(n大于等于1)表示一般规律。

<1>1+3+5+...+99=50的平方

<2>1+3+5+...+n=[(n-1)/2+1]的平方

三年级趣味数学小知识

例1、

题目:A地位于河流上游,B地位于河流下游,甲船从A地,乙船从B地,相向而行,12月起,两船有了新的发动机,速度变为原来的1.5倍,这时候相遇的地点与原来相比变化了1000米,12月6日,水流速度为原来的两倍,那么两船相遇的地点与12月2日相比变化了多少?

解答:

首先因为顺流是船速+水的速度,而逆流是船速-水的速度。水的速度一个加,一个减,相互抵消。

因此两船相遇所用的时间只与船速有关,与水的速度无关

那么当12月2日船速变成1.5倍时,所用的时间变成了原来的2/3

而此时顺流而下甲所走的实际距离如果不考虑水的话,因为速度变成了1.5倍,所以应该不变

而现在由于顺流,所以还要考虑水的速度。也就是说相遇的地点所移动的1000米就是水在原来的时间的1/3

内所走的距离

那么接下来水的速度变成原来的2倍,而这种情况还是那句话,时间只与船速有关,与水的速度无关,因此总时间仍然还是一开始时间的2/3,然后还是按照上面的方法去分析相遇点的移动:

甲的速度是船速+水的速度。时间不变,船速不变,那么相遇点的移动只和水的速度有关。这回是水的速度变成原来的两倍时间仍然是一开始时间的2/3,我们也分析了水在一开始的时间的1/3内所走的距离是1000米,所以这回相遇点移动了(2/3)/(1/3)*1000=2000米

数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语:Mathematics),源自于古希腊语的μθημα(máthēma),其有学习、学问、科学之意。古希腊学者视其为哲学之起点,“学问的基础”。另外,还有个较狭隘且技术性的意义——“数学研究”。即使在其语源内,其形容词意义凡与学习有关的,亦会被用来指数学的。

其在英语的复数形式,及在法语中的复数形式+es成mathématiques,可溯至拉丁文的中性复数(Mathematica),由西塞罗译自希腊文复数τα μαθηματικ?(ta mathēmatiká).

在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”).

数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献.

基础数学的知识与运用是个人与团体生活中不可或缺的一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态.

代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一.几何学则是最早开始被人们研究的数学分支.

直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起.从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程.而其后更发展出更加精微的微积分.

现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……).[1]?

数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等.数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展.数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标.虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用.

具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学)。

有关数学的小常识

1. 一句话趣味数学小知识

一句话趣味数学小知识 1.数学趣味小知识 简短的 20到50字左右

趣味数学小知识

数论部分:

1、没有最大的质数。欧几里得给出了优美而简单的证明。

2、哥德巴赫猜想:任何一个偶数都能表示成两个质数之和。陈景润的成果为:任何一个偶数都能表示成一个质数和不多于两个质数的乘积之和。

3、费马大定理:x的n次方+y的n次方=z的n次方,n>2时没有整数解。欧拉证明了3和4,1995年被英国数学家 安德鲁*怀尔斯 证明。

拓扑学部分:

1、多面体点面棱的关系:定点数+面数=棱数+2,笛卡尔提出,欧拉证明,也称欧拉定理。

2、欧拉定理推论:可能只有5种正多面体,正四面体,正八面体,正六面体,正二十面体,正十二面体。

3、把空间翻过来,左手系的物体就能变成右手系的,通过克莱因瓶模拟,一节很好的头脑体操,

摘自:/bbs2/ThreadDetailx?id=31900

2.生活中的趣味数学知识

1.一个服装的工人每人每天可以生产4件上衣或7条裤子,一件上衣和一条裤子为一套服装。现有66名工人生产,每天最多能生产多少套服装?

2、小王有三本集邮册,全部邮票的五分之一在第一本上,N除以8(N为非零自然数)在第二本上,剩余的39张在第三本上。小王有多少张邮票?

3.小明看着自己的成绩表预测:如果下次数学考试100分,那么总平均分是91分,如果下次考80分,那么数学总平均成绩是86分,小明数学统计表是已经有几次考试?

1

设x名工人生产上衣,得

4x=7*(66-x)

则x=42

所以一天可以生产 4*42=168 套服装

2

设其有x张邮票.得

x/5+N/8+39=x

化简得 4x/5-N/8=39

由题意知,N为8的陪数,又4x/5为偶数,39为奇数.则N为8的奇数陪数.设N=(2t+1)*8 得4x/5-(2t+1)=39

x=(100+5t)/2

则5t为偶数,再设t=2w,得x=(100+5*2w)/2=50+5w

由此可知,共有50+5w 张邮票, w为0,1,2,3,4,。

此时N=32w+8

3

设有x次考试的成绩,现在的平均分为a.则有

(xa+100)/(x+1)=91

(xa+80)/(x+1)=86

两式相减得20/(x+1)=5

则x=3 a=88

即 现有3次考试的成绩

3.数学趣味小故事20字

数学趣味小故事 故事一: 动物城对称图形 有一天,一只蝴蝶在动物城的花丛里飞来飞去,一只小蜻蜓飞过来,说:"小蜻蜓,咱们一起玩吧。

"小蝴蝶说:"我是蝴蝶,你是蜻蜓,怎么能在一起玩呢?"小蜻蜓说:"在图形王国里,我们就是一家的,另外还有许多家庭成员呢?不信,我领你去看。

"一路上,蝴蝶看到了许多美丽的景色,还看见了许多动物:有美丽的孔雀,知了,七星瓢虫。

小朋友们,它们美吗?你觉得它们哪儿美呢? 故事二 : 张三的生死可能性 古时候,有一位糊涂的县官,因为听信他师爷的谗言,就把无辜的张三抓了起来,在审问时,他对张三说:"明天给你最后一次机会,到时我这里有两枚签,一枚签上写着'死'字,另一枚签上写着'生'字,你抽到哪一枚签,就判你什么。"小朋友,如果让张三抽的话,可能会怎样呢?" 可是,一心想害死张三的师爷却在两个签上都写了一个"死"字,小朋友,如果再让张三抽的话,结果会怎样呢?幸亏张三的一位朋友把这个消息告诉了他。

第二天,县官在开堂时,让张三抽签。张三抽了一枚签,连忙吞进肚子里。

县官只好打开另一枚签,发现上面写着"死"字,以为张三抽到的是"生"字签,就只好放了张三。

4.趣味数学小知识,大概300字左右,办手抄报用,

燃绳计时一根绳子,从一端开始燃烧,烧完需要1小时.现在你需要在不看表的情况下,仅借助这根绳子和一盒火柴测量出半小时的时间.你可能认为这很容易,你只要在绳子中间做个标记,然后测量出这根绳子燃烧完一半所用的时间就行了.然而不幸的是,这根绳子并不均匀,有些地方比较粗,有些地方却很细,因此这根绳子不同地方的燃烧率不同.也许其中一半绳子燃烧完仅需5分钟,而另一半燃烧完却需要55分钟.面对这种情况,似乎想利用上面的绳子准确测出30分钟时间根本不可能,但是事实并非如此,因此大家可以利用一种创新方法解决上述问题,这种方法是同时从绳子两头点火.绳子燃烧完所用的时间一定是30分钟.火车相向而行问题两辆火车沿相同轨道相向而行,每辆火车的时速都是50英里.两车相距100英里时,一只苍蝇以每小时60英里的速度从火车A开始向火车B方向飞行.它与火车B相遇后,马上掉头向火车A飞行,如此反复,直到两辆火车相撞在一起,把这只苍蝇压得粉碎.苍蝇在被压碎前一共飞行了多远?我们知道两车相距100英里,每辆车的时速都是50英里.这说明每辆车行驶50英里,即一小时后两车相撞.在火车出发到相撞的这一小时间,苍蝇一直以每小时60英里的速度飞行,因此在两车相撞时,苍蝇飞行了60英里.不管苍蝇是沿直线飞行,还是沿“z”形线路飞行,或者在空中翻滚着飞行,其结果都一样.8楼掷硬币并非最公平抛硬币是做决定时普遍使用的一种方法.人们认为这种方法对当事人双方都很公平.因为他们认为钱币落下后正面朝上和反面朝上的概率都一样,都是50%.但是有趣的是,这种非常受欢迎的想法并不正确.首先,虽然硬币落地时立在地上的可能性非常小,但是这种可能性是存在的.其次,即使我们排除了这种很小的可能性,测试结果也显示,如果你按常规方法抛硬币,即用大拇指轻弹,开始抛时硬币朝上的一面在落地时仍朝上的可能性大约是51%.之所以会发生上述情况,是因为在用大拇指轻弹时,有些时候钱币不会发生翻转,它只会像一个颤抖的飞碟那样上升,然后下降.如果下次你要选出将要抛钱币的人手上的钱币在落地后哪面会朝上,你应该先看一看哪面朝上,这样你猜对的概率要高一些.但是如果那个人是握起钱币,又把拳头调了一个个儿,那么,你就应该选择与开始时相反的一面.。

5.有关数学的小知识

对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?

一、重视课内听讲,课后及时进行复习.

新知识的接受和数学能力的培养主要是在课堂上进行的,所以我们必须特别注意课堂学习的效率,寻找正确的学习方法.在课堂上,我们必须遵循教师的思想,积极制定以下步骤,思考和预测解决问题的思想与教师之间的差异.特别是,我们必须了解基本知识和基本学习技能,并及时审查它们以避免疑虑.首先,在进行各种练习之前,我们必须记住教师的知识点,正确理解各种公式的推理过程,并试着记住而不是采用"不确定的书籍阅读".勤于思考,对于一些问题试着用大脑去思考,认真分析问题,尝试自己解决问题.

二、多做习题,养成解决问题的好习惯.

如果你想学好数学,你需要提出更多问题,熟悉各种问题的解决问题的想法.首先,我们先从课本的题目为标准,反复练习基本知识,然后找一些课外活动,帮助开拓思路练习,提高自己的分析和掌握解决的规律.对于一些易于查找的问题,您可以准备一个用于收集的错题本,编写自己的想法来解决问题,在日常养成解决问题的好习惯.学会让自己高度集中精力,使大脑兴奋,快速思考,进入最佳状态并在考试中自由使用.

三、调整心态并正确对待考试.

首先,主要的重点应放在基础、基本技能、基本方法,因为大多数测试出于基本问题,较难的题目也是出自于基本.所以只有调整学习的心态,尽量让自己用一个清楚的头脑去解决问题,就没有太难的题目.考试前要多对习题进行演练,开阔思路,在保证真确的前提下提高做题的速度.对于简单的基础题目要拿出二十分的把握去做;难得题目要尽量去做对,使自己的水平能正常或者超常发挥.

由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.

1.关于数学的小知识

杨辉三角是一个由数字排列成的三角形数表,一般形式如下:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

… … … … …

杨辉三角最本质的特征是,它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和。其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。杨辉,字谦光,北宋时期杭州人。在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图。而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。现在要求我们用编程的方法输出这样的数表。

同时 这也是多项式(a+b)^n 打开括号后的各个项的二次项系数的规律 即为

0 (a+b)^0 (0 nCr 0)

1 (a+b)^1 (1 nCr 0) (1 nCr 1)

2 (a+b)^2 (2 nCr 0) (2 nCr 1) (2 nCr 2)

3 (a+b)^3 (3 nCr 0) (3 nCr 1) (3 nCr 2) (3 nCr 3)

. 。 。 。 。 。

因此 杨辉三角第x层第y项直接就是 (y nCr x)

我们也不难得到 第x层的所有项的总和 为 2^x (即(a+b)^x中a,b都为1的时候)

[ 上述y^x 指 y的 x次方;(a nCr b) 指 组合数]

其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。

杨辉,字谦光,北宋时期杭州人。在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图。

而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。具体的用法我们会在教学内容中讲授。

在国外,这也叫做"帕斯卡三角形".

2.关于数学的小知识

1,零 在很早的时候,以为“1”是“数字字符表”的开始,并且它进一步引出了2,3,4,5等其他数字。

这些数字的作用是,对那些真实存在的物体,如苹果、香蕉、梨等进行计数。直到后来,才学会,当盒子里边已经没有苹果时,如何计数里边的苹果数。

2,数字系统 数字系统是一种处理“多少”的方法。不同的文化在不同的时代采用了各种不同的方法,从基本的“1,2,3,很多”延伸到今天所使用的高度复杂的十进制表示方法。

3,π π是数学中最著名的数。忘记自然界中的所有其他常数也不会忘记它,π总是出现在名单中的第一个位置。

如果数字也有奥斯卡奖,那么π肯定每年都会得奖。 π或者pi,是圆周的周长和它的直径的比值。

它的值,即这两个长度之间的比值,不取决于圆周的大小。无论圆周是大是小,π的值都是恒定不变的。

π产生于圆周,但是在数学中它却无处不在,甚至涉及那些和圆周毫不相关的地方。 4,代数 代数给了一种崭新的解决间题的方式,一种“回旋”的演年方法。

这种“回旋”是“反向思维”的。让我们考虑一下这个问题,当给数字25加上17时,结果将是42。

这是正向思维。这些数,需要做的只是把它们加起来。

但是,假如已经知道了答案42,并提出一个不同的问题,即现在想要知道的是什么数和25相加得42。这里便需要用到反向思维。

想要知道未知数x的值,它满足等式25+x=42,然后,只需将42减去25便可知道答案。 5,函数 莱昂哈德·欧拉是瑞士数学家和物理学家。

欧拉是第一个使用“函数”一词来描述包含各种参数的表达式的人,例如:y?=?F(x),他是把微积分应用于物理学的先驱者之一。

3.生活中有哪些数学知识,请列举,字要多一点

在我们生活的周围有很多的数学问题,这些数学问题贯穿于生活的方方面面,现实生活中,数学游戏有很多,比方说小朋友在打扑克时快算二十四、数学填框游戏,就连赵本山的小品中也有很多这样的数学游戏.如“树上七个猴,地上一个猴,一共几个猴.”等等生活中的例子.这些游戏构成了我们生活中五彩缤纷的画卷.我们每天早上一起来,首先是对一天的事情进行一下比较简单的计划,一天中要干哪些事情,需要什么时间完成,这一天的预算支出、收入各多少;有了一个初步的打算以后,开始对一天的工作进行实施;一天的工作进行中伴随着各种各样的计算、预算即数学.一天的工作结束后,接下来的是对这一天进行的小结,小结是通过一个一个的数学运算进行的,运算的结果是一个个比较直观的数字.我们现实生活中,购物、估算、计算时间、确定位置和买卖股票等等都与数学有关.可以说,数学在人们的生活中是无处不在的,数学是日常生活中必不可少的工具.无论人们从事什么职业,都不同程度地会用到数学的知识与技能以及数学的思考方法.特别是随着计算机的普及与发展,这种需要更是与日俱增.无论是我们日常生活中的天气预报、储蓄、市场调查与预测,还是基因图谱的分析、工程设计、信息编码、质量监测等等,都离不开数学的支持.而且,数学是和语言一样的一种工具,具有国际通用性.可以说,自然界中的数学不胜枚举,如蜜蜂营造的蜂房,它的表面就是由奇妙的数学图形——正六边形构成的,这种蜂房消耗最少的材料和时间;城市里的下水道盖都有是圆形的,你知道这是为什么吗?人行道上,常见到这样的图案,它们分别是同样大小的正方形或正六边形的地砖铺成的,这样形状的地砖能铺成平整无孔隙的地面.这里面竟有一个节约的数学道理在里面呢?再比如,100户人家要安装电话,事实上并不需要100条电话线路,只要允许有一些时间占线,就能大大节约安装成本,这正体现了数理统计的作用.因此,生活与数学是分不开的,生活中有数学,数学是生活的缩影.在一年要结束的时候,商人在谈论中说我这一年的收入是多少,与去年相比怎么样;农民也在谈论这一年中收入多少粮食;工人也在谈论在这一年的收入与支出是否相当,有多少存款;军人谈论这一年中训练成绩如何,提高了多少成绩;而学生的学习成绩则是对一位教师一年来辛苦工作的衡量标准;单位也在做这样那样的总结.一年的结束是这样的,下一年的开始同样也要有一个预算;一天、一个月、一个季度、一个阶段人们都在做同样的事情;一个人、一个家庭、一个单位、一个组织、一个国家等等,都在用数学的方法对他们在不同时间、地点、空间、人员、事务等等上做一定的运算后,得出一个直观的数字标示量,作为一个目标、结论、预算、程度等等.总之,生活中的数学可以说是无处不在,数学严重影响着我们的生活,是生活中的重要条件.因此,我们不可忽视生活中的数学,要重视它并最大限度地开发、利用它.。

4.数学小知识

1.、王菊珍的百分数

我国科学家王菊珍对待实验失败有句格言,叫做“干下去还有50%成功的希望,不干便是100%的失败。”

2、托尔斯泰的分数

俄国大文豪托尔斯泰在谈到人的评价时,把人比作一个分数。他说:“一个人就好像一个分数,他的实际才能好比分子,而他对自己的估价好比分母。分母越大,则分数的值就越小。”

1、数学的本质在於它的自由. 康扥尔(Cantor)

2、在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要. 康扥尔(Cantor)

3、没有任何问题可以向无穷那样深深的触动人的情感, 很少有别的观念能像无穷那样激励理智产生富有成果的思想, 然而也没有任何其他的概念能向无穷那样需要加以阐明. 希尔伯特(Hilbert)

4、数学是无穷的科学. 赫尔曼外尔

5、问题是数学的心脏. P.R.Halmos

6、只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示着独立发展的终止或衰 亡. Hilbert

7、数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深. 高斯

3、雷巴柯夫的常数与变数

俄国历史学家雷巴柯夫在利用时间方面是这样说的:“时间是个常数,但对勤奋者来说,是个‘变数’。用‘分’来计算时间的人比用‘小时’来计算时间的人时间多59倍。”

二、用符号写格言

4、华罗庚的减号

我国著名数学家华罗庚在谈到学习与探索时指出:“在学习中要敢于做减法,就是减去前人已经解决的部分,看看还有那些问题没有解决,需要我们去探索解决。”

5、爱迪生的加号

大发明家爱迪生在谈天才时用一个加号来描述,他说:“天才=1%的灵感+99%的血汗。”

6、季米特洛夫的正负号

著名的国际工人运动活动家季米特洛夫在评价一天的工作时说:“要利用时间,思考一下一天之中做了些什么,是‘正号’还是‘负号’,倘若是‘+’,则进步;倘若是‘-’,就得吸取教训,采取措施。”

三、用公式写的格言

7、爱因斯坦的公式

近代最伟大的科学家爱因斯坦在谈成功的秘诀时,写下一个公式:A=x+y+z。并解释道:A代表成功,x代表艰苦的劳动,y代表正确的方法,Z代表少说空话。”

5.有关数学的小知识

对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?

一、重视课内听讲,课后及时进行复习.

新知识的接受和数学能力的培养主要是在课堂上进行的,所以我们必须特别注意课堂学习的效率,寻找正确的学习方法.在课堂上,我们必须遵循教师的思想,积极制定以下步骤,思考和预测解决问题的思想与教师之间的差异.特别是,我们必须了解基本知识和基本学习技能,并及时审查它们以避免疑虑.首先,在进行各种练习之前,我们必须记住教师的知识点,正确理解各种公式的推理过程,并试着记住而不是采用"不确定的书籍阅读".勤于思考,对于一些问题试着用大脑去思考,认真分析问题,尝试自己解决问题.

二、多做习题,养成解决问题的好习惯.

如果你想学好数学,你需要提出更多问题,熟悉各种问题的解决问题的想法.首先,我们先从课本的题目为标准,反复练习基本知识,然后找一些课外活动,帮助开拓思路练习,提高自己的分析和掌握解决的规律.对于一些易于查找的问题,您可以准备一个用于收集的错题本,编写自己的想法来解决问题,在日常养成解决问题的好习惯.学会让自己高度集中精力,使大脑兴奋,快速思考,进入最佳状态并在考试中自由使用.

三、调整心态并正确对待考试.

首先,主要的重点应放在基础、基本技能、基本方法,因为大多数测试出于基本问题,较难的题目也是出自于基本.所以只有调整学习的心态,尽量让自己用一个清楚的头脑去解决问题,就没有太难的题目.考试前要多对习题进行演练,开阔思路,在保证真确的前提下提高做题的速度.对于简单的基础题目要拿出二十分的把握去做;难得题目要尽量去做对,使自己的水平能正常或者超常发挥.

由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.

6.数学小知识

1.、王菊珍的百分数 我国科学家王菊珍对待实验失败有句格言,叫做“干下去还有50%成功的希望,不干便是100%的失败。”

2、托尔斯泰的分数 俄国大文豪托尔斯泰在谈到人的评价时,把人比作一个分数。他说:“一个人就好像一个分数,他的实际才能好比分子,而他对自己的估价好比分母。

分母越大,则分数的值就越小。” 1、数学的本质在於它的自由. 康扥尔(Cantor) 2、在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要. 康扥尔(Cantor) 3、没有任何问题可以向无穷那样深深的触动人的情感, 很少有别的观念能像无穷那样激励理智产生富有成果的思想, 然而也没有任何其他的概念能向无穷那样需要加以阐明. 希尔伯特(Hilbert) 4、数学是无穷的科学. 赫尔曼外尔 5、问题是数学的心脏. P.R.Halmos 6、只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示着独立发展的终止或衰 亡. Hilbert 7、数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深. 高斯 3、雷巴柯夫的常数与变数 俄国历史学家雷巴柯夫在利用时间方面是这样说的:“时间是个常数,但对勤奋者来说,是个‘变数’。

用‘分’来计算时间的人比用‘小时’来计算时间的人时间多59倍。” 二、用符号写格言 4、华罗庚的减号 我国著名数学家华罗庚在谈到学习与探索时指出:“在学习中要敢于做减法,就是减去前人已经解决的部分,看看还有那些问题没有解决,需要我们去探索解决。”

5、爱迪生的加号 大发明家爱迪生在谈天才时用一个加号来描述,他说:“天才=1%的灵感+99%的血汗。” 6、季米特洛夫的正负号 著名的国际工人运动活动家季米特洛夫在评价一天的工作时说:“要利用时间,思考一下一天之中做了些什么,是‘正号’还是‘负号’,倘若是‘+’,则进步;倘若是‘-’,就得吸取教训,采取措施。”

三、用公式写的格言 7、爱因斯坦的公式 近代最伟大的科学家爱因斯坦在谈成功的秘诀时,写下一个公式:A=x+y+z。并解释道:A代表成功,x代表艰苦的劳动,y代表正确的方法,Z代表少说空话。”

7.求数学趣味小知识

◆“0”

罗马数字没有0;

五世纪时,“0”从东方传到罗马,当时教皇非常保守,认为罗马数字可以用来记任何数目,已足够用,就禁止用“0”,一位罗马学者的手册介绍了0和0的一些用法,教皇发现后,对它施以酷刑。

◆以“规”、“矩”度天下之方圆

山东省嘉祥县一座古建筑石室造像中,有两位古代神化中我们远古祖先的形象,一位是伏羲,一位是女娲。伏羲手中物体就是规,与圆规相似;女娲手中物体叫矩,呈直角拐尺形。

有两个供你选择~

关于“初一数学趣味题的题目附答案”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

本文来自作者[南琴]投稿,不代表赤玉坊立场,如若转载,请注明出处:https://www68.cn/bkqs/202412-7021.html

(5)

文章推荐

发表回复

本站作者后才能评论

评论列表(4条)

  • 南琴
    南琴 2024年12月18日

    我是赤玉坊的签约作者“南琴”!

  • 南琴
    南琴 2024年12月18日

    希望本篇文章《初一数学趣味题的题目附答案》能对你有所帮助!

  • 南琴
    南琴 2024年12月18日

    本站[赤玉坊]内容主要涵盖:国足,欧洲杯,世界杯,篮球,欧冠,亚冠,英超,足球,综合体育

  • 南琴
    南琴 2024年12月18日

    本文概览:网上有关“初一数学趣味题的题目附答案”话题很是火热,小编也是针对初一数学趣味题的题目附答案寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您...

    联系我们

    邮件:赤玉坊@sina.com

    工作时间:周一至周五,9:30-18:30,节假日休息

    关注我们