网上有关“稀土农用的概述”话题很是火热,小编也是针对稀土农用的概述寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
稀土就是化学元素周期表中镧系元素,简称稀土(RE或R)。
稀土农用(也称农用稀土),英文:Rare Earth Farm ,是稀土化工和稀土生物分离出来的一门新的学科,包括植物应用和动物应用两个方面。 稀土是周期表中的一族元素,它由性质十分相似的镧、铈、镨、钕等15种元素和与镧系元素性质极为相似的钪、钇共十七种元素组成,统称为稀土元素。
其实稀土元素并不稀少,17种元素共占地壳总量的0.0153%,这比铜在地壳中的总量还多一倍。就单个元素而言,铈最多,它的克拉克值为0.0046%,与常见元素锌差不多。钇为0.0028%,镧为0.0018%比常见元素铅还多。
总之,稀土元素在地壳中的含量与铜、铅、锌不相上下,比锡、钴、银、汞等元素还多。 稀土拌种、浸种,可增加种子活力,促进作物种子萌发,提高种子的出苗率,是“益植素”稀土使作物增效的一种重要作用。一定浓度的“益植素”稀土化合物浸种拌种可以增加种子的活力,稀土的这种作用已应用在小麦、水稻、玉米、大豆、白菜、油菜、麻类等大田作物上,其中小麦发芽提高幅度达8~19%,胡麻提高7%~12%,稀土的这种作用也用于牧草种植,其发芽率提高9.8~19%。在林业上苗圃基地也利用稀土的这个特性,种子浸种可明显提高其活力,用适量的稀土化合物溶液处理油松、柠条及华北落叶松种籽,可分别提高种籽活力指数8%~13%、25.9~57.2%和9%,发芽率分别提高4%~11%,2%~6%和3%~9%,田间出苗高峰要早2~4天。桑籽浸种可提高发芽率达18%~78%。
稀土对植物根系和扦插生根具有显著的促进作用。植物根系是植物从其生活环境中获取水分和养分的重要器官,根系的生理活动直接影响着植物一生的生长发育。研究表明,适量的稀土元素可促进植物根系的生长发育,提高根系活力,促进根分化和代谢活动,提高根对营养元素的吸收能力。研究表明适量稀土处理的水稻根系体积比对照增大1.18倍,根系活力增加20%。花生试验也表明,稀土处理花生的根系活力比对照也增加30.8%。大田作物如小麦、水稻、玉米和甘蔗等根系生长均有明显的促进作用。根长增加4%~10%,根重增加15%以上,根系体积增加2.5%。稀土元素对木本植物插条生根具有促进作用,特别是生长刺激素与生长素配合效果更好。用杨树、月季、圆柏、落叶松做扦插,其生根率达到60%~85%,龙眼、高山含笑、板栗等难生根树种插条根系生长也可达到35%~60%, 比单用激素生根率提高30%。
稀土对种子活性的增强和发芽率的提高以及对木本植物扦插生根的促进作用能够保证作物出苗率和扦插成活率,不但打下丰收基础,而且还节约了时间和成本。谚语常说“有钱买籽,无钱买苗”。“益植素”稀土在种子萌发、移栽、扦插方面必将发挥重要作用。 叶绿素是植物进行光合作用的物质基础。叶绿素含量越高,光合作用的强度就越大。多年试验结果表明,许多作物应用稀土后,叶绿素含量都有所提高。水稻在幼苗期喷施万分之三的稀土,经过一段时间后,可以目测到叶色逐渐加深,经过测定剑叶中叶绿素含量比对照增加11.8%。黄花菜叶片叶绿素含量增加0.2mg/g。叶片喷施适量的稀土可明显提高黑穗醋栗叶片的光合速率、叶绿素含量、光量子通量密度等生理指标,表明稀土可促进黑穗醋栗生长。叶绿素的增加会提高植物的干物质累计量,提高经济产量。黑龙江春小麦试验结果表明,39次试验中有34次增产,增产幅度为7.53%~18.88%。长期定位试验结果也表明,稀土促进小麦生长,提高产量5%~10%。水稻上施用的增产幅度为30kg/亩、玉米的增产幅度为41~50kg/亩、油菜增产7.6~11.4%、茶叶平均增产12%~15%、蔬菜如黄瓜为25%和草莓增产30%,同时“益植素”稀土其他蔬菜和经济作物上也都有很好的增产效果。
稀土具有促进林木种子生长发育,提高林产品产量,改善产品质量等应用。目前应用树种已达40个以上,以浸种、拌种、沾根、插条和叶面喷施等方式用于苗木培养,促进树木生长,防病抗逆,增加产量。“益植素”稀土元素对多种果树都有一定的增产效应,一般增产幅度在10%~25%。而不同地理位置不同类型的水果,因气候条件的变化,其增产效果有差异。如南方的柑桔、荔枝和龙眼喷施稀土比未喷稀土的分别增产19.2%、17.0%和24.5%;北方的葡萄、苹果和梨等分别增产22.8%、14.7%和11.3%。此外,果树施用稀土不仅可以增加产量,而且可改善苗木和果品质量,使果实含糖量、维生素含量及硬度指标等均有不同程度的提高,同时可以促进着色,提早成熟;苗木一级品率提高15%~25%。
适量“益植素”稀土拌种可提高桑树新种子发芽率7个百分点,旧种子达44个百分点,可显著促进幼苗的生长。试验结果还表明,桑树以适当浓度喷施稀土后,发条数增加6.4~9.0%、新梢长度增加6.89~22.46%和叶片数增加5.12~14.1%,平均每片叶重增加12.57~31.49%,单位面积产量提高11.67~16.67%。 光合作用对植物干物质的积累和作物产量均有决定性的作用。无论是大田实验,还是实验室实验都明确证明,稀土元素对植物的光合作用有明显的影响。显微学研究表明:稀土可增加叶肉组织中叶绿体的数量,提高微管束的排列密度,因此可提高光合作用效率。
稀土元素对糖用甜菜块根膨大期和糖分积累期光合产物分配的影响可利用CO2示踪法来检测。结果显示,喷施适当浓度稀土元素可提高甜菜同化CO2能力,提高根冠比,改善光合产物的分配,有利于光合产物向块根运输。用适当浓度稀土元素在苗期和花针期喷施花生时,可提高叶片叶绿素含量和净光合强度,因而增加花生荚果产量。刘洪章等用叶面喷施稀土方法,对黑穗醋栗生长进行了研究,发现低浓度(300-800ng/L)处理能显著增大叶面积,提高叶片叶绿素总量,对叶片光通量密度,气孔导度和蒸腾速率均有良好的影响,对提高座果率,单株产量等均有益处,而高浓度处理时则出现抑制作用。
有关稀土元素对光合作用产生影响的机理一直是受人关注的一个研究方面。但目前还没有一种被大家所一致公认的机理。有报道说,铈对黄瓜叶绿体中叶绿素蛋白质复合物的形成有影响。李赛君等则在甲醇和醋酸体系中合成得到叶绿素-镧配合物。通过研究叶绿素-镧和叶绿素a的紫外可见(UV--VIS)和瓷圆二色性谱(MAD)证明,镧离子已配位到叶绿素的卟啉环上,形成了叶绿素-镧的配合物。沈博礼等则认为稀土对植物光合能量代谢的影响,主要还是促使PSⅡ蛋白质复合体的活性加强和电子传递链中电子传递速率加快,从而带动整个光能转换和光化学反应。还有的研究者发现稀土元素还可以改变叶绿素在细胞内的移动速率。 由于稀土元素可促植物生长,提高光合速率,增强植物的光合作用,提高种子萌发能力和根系发育,从而增强了对养分的吸收以及干物质的积累,所以稀土元素对植物的效应既能提高其生物量,还能改善其品质。对水稻(Oryzasativa)、桔子(Citrus)、西瓜(Citrullus)和菠菜(Spinacia oleracea)等植物施用稀土元素后将增加其产量,改善品质,同时也减少了植物体内农药剂含量。结果表明,适宜浓度稀土浸种花生不仅提高了叶绿素含量和光合强度,而且还促进了叶片细胞叶绿体的生长发育,使叶绿体结构完整、排列整齐,基粒片层数增多,紧密度高,从而有利于光能的吸收和转化,提高荚果产量。Xie等发现低浓度镧能促进水稻生长、根系干重和穗粒数,而高浓度镧抑制穗粒形成和根系延长生长在整个浓度范围内镧元素对水稻茎杆重没有显著影响。储钟稀等研究了稀土对玉米的生物效应影响,玉米种子经稀土溶液浸种48h,玉米的萌发势和幼苗生长明显优于对照,他还发现“益植素”稀土对玉米叶片的叶绿素含量和叶绿素a/b比值有促进作用。
稀土还能提高植物果实的品质。国光苹果树在花期施用稀土溶剂1~2次,坐果率平均提高5%~7%,最高达12%;着色前喷施1~2次可增色10%~30%左右,果实糖分增加0.5%~1.0%。据王颖明测定,荔枝(Litchi chinensis)施用稀土元素后坐果率比对照平均增加5.4%,施用稀土元素可使荔枝早抽穗、果实色泽红艳,比对照的早熟10天左右。李淑仪等报道施用适量稀土可提高沙田柚(Citrus grandis)树木对营养元素的吸收,促进养分平衡,从而提高沙田柚坐果率和产量,而且对柚果还有增糖降酸的效果。国内外对稀土元素研究进行了不少工作,多数研究者肯定了“益植素”稀土元素对植物生长有一定的刺激作用,施用适量“益植素”稀土元素能提高植物生物量,改善其品质。 稀土元素在土壤中广泛存在,但植物体内稀土元素的含量与多种因素有关。土壤环境,植物的种类,气候条件等都会使植株内的稀土元素含量差异很大。同一植株的不同器官,不同生长部位的含量也不相同。从整体看,在自然状态下,植物从土壤中吸收稀土元素后,不同器官中稀土元素的含量由大到小的顺序是:根,叶,茎,花,果实。马玉增,劳秀荣,郝福玲等通过用稀土浸种,分别研究了花生,玉米和小麦对稀土的动态吸收过程和植物各器官对稀土的吸收量,结果表明,含量分布与在不施稀土的自然状态下相同。
对稀土元素在植物体内存在位置和存在状态的研究是探索稀土元素的植物生理功能的一条重要途径。周世恭利用电镜制片技术使进入小麦幼苗的镧离子固定在原有位置,采用扫描电镜与能谱分析相结合的方法进行研究。结果显示:进入植物体的镧离子多数沉积在根尖细胞壁上,只有少量积累在生长区皮层细胞壁和叶肉细胞壁上细胞质中未检出。表明镧离子主要沿细胞壁和壁外途径传递和分布,未能通过质膜进入到细胞内。而李齐等以不同浓度Ce(NO3)3处理I-90杨根,再经快速冷冻干燥,塑料真空渗透包埋,用透射电镜能量分散型X射线微区分析法对铈及其它离子在亚细胞微区间的分布和含量进行了测定。表明铈不但进入植物细胞,而且在细胞核内有明显富集。在此,是由于供试的稀土离子不同,植物的种类不同,还是实验条件的差别(如稀土处理样品的方法,植物的生长期不同等)而导致不同的结论,尚不清楚。这方面的工作还有待于进一步深入。
有关稀土在植物体内存在形式的研究工作并不多见。这几年来,只有钟淑琳报道了从未喷施过稀土的新鲜茶叶中分离出一种稀土-脂多糖,并测定了其分子量。这方面的工作进展缓慢可能是由于植物的组成成分复杂,且稀土-生物分子化合物含量甚微,现有的分离手段难以达到这样的要求,从而使得这方面的工作较为困难。
具有代表性的产品有:精品稀土,益植素。
稀土元素地球化学特征及地质意义
稀土是指元素周期表中原子序数为57 到71 的15种镧系元素氧化物,以及与镧系元素化学性质相似的钪(Sc) 和钇(Y)共17 种元素的氧化物。
知识点延伸:
稀土在石油、化工、冶金、纺织、陶瓷、玻璃、永磁材料等领域都得到了广泛的应用,随着科技的进步和应用技术的不断突破,稀土氧化物的价值将越来越大。
根据稀土元素原子电子层结构和物理化学性质,以及它们在矿物中共生情况和不同的离子半径可产生不同性质的特征,十七种稀土元素通常分为二组:
1、轻稀土包括:镧、铈、镨、钕、钷、钐、铕、钆。
2、重稀土包括:铽、镝、钬、铒、铥、镱、镥、钪、钇。
稀土元素是指原子序数从57到71的15个镧系元素,在元素周期表中属ⅢB族,同族中39号元素钇一般也看作稀土元素,同族中21号元素钪早期也有人把划入稀土元素,但多数研究者将它排除在外,因为它们在自然界中与稀土元素共生关系不密切,化学性质差别也比较大。稀土元素根据它们在物理化学性质上的某些差别可以将它们分成两组:从La到Eu称为轻稀土(LREE),或铈组稀土;从Gd到Lu,包括Y称为重稀土(HREE),或钇组稀土。稀土元素的离子半径近似,电价以三价为主,故它们的地球化学行为近似。当然也存在一定的差别,其原因在于:①离子半径有微小差别;②碱性不同决定了它们的沉淀顺序和迁移能力有所不同;③形成络合物的能力各不相同,因而在自然界中的迁移能力也不相同;④它们被吸附的能力随原子序数的增加、半径的减小而减小。这样就造成了它们在自然界中发生一定程度的分离(即出现“亏损”和“富集”)而显示不同的分配特点。
(1)样品采集及分析
本次研究分别在川东南的南川、万盛、道真、武隆、石柱、黔江、酉阳、秀山、沿河,以及湘西的花垣、永顺、龙山、咸丰、宣恩等地共采集了210件志留系小河坝组砂岩样品(图3.5)。
从各个剖面选取了37件新鲜样品进行了稀土元素及微量元素地球化学分析(每个剖面的样品自底部向顶部依次编号见表3.6),主要岩性为砂岩、细砂岩,样品稀土元素分析在中国科学院青岛海洋研究所分析与检测中心完成。样品破碎后研磨至200目,然后装袋备用。分析步骤为:称取40mg样品于Teflon溶样罐中,加入0.6mLHNO3+2mLHF封盖后,静置2h后,于150℃电热板上溶样24h;加0.25mLHClO4于150℃电热板上敞开蒸酸至近干;加1mLHNO3+1mLH2O密闭于120℃电热板回溶12h;用高纯H2O定容至40g;然后在仪器ICP-MS上进行测试,各标准样品(GSR-1,GSR-3,BHVO-2,BCR-2)及空白样品所测稀土元素的线性较好,分析误差基本都小于5%,很少大于10%,相同样品测试结果一致,测试结果准确可信。各测试样品最终结果取三次测定的平均值。
表3.6 川东南-湘西志留系小河坝组砂岩稀土元素地球化学分析数据(μg/g)
注:数据测试在中国科学院青岛海洋研究所分析与检测中心进行。
(2)稀土元素含量及其特征值
各沉积岩中稀土元素含量及化学参数见表3.6和表3.7。
表3.7 川东南-湘西志留系小河坝组砂岩稀土元素(μg/g)及地球化学参数
续表
注:陨石数据根据Leed球粒陨石(田彰正,1973);稀土元素总量∑REE=La+Ce+Pr+Nd+Sm+Eu+Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu;轻稀土元素含量LREE=La+Ce+Pr+Nd+Sm+Eu;重稀土元素含量HREE=Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu;L/H:轻稀土含量与重稀土含量之比;(LaN/YbN):LaN和YbN经球粒陨石标准化的比值;Eu/Eu*=Eu/(SmN×GdN)1/2;Ce/Ce*=Ce/(LaN×PrN)1/2;(Lan/Ybn):Lan和Ybn经北美页岩标准化的比值。
川东南、湘西地区志留系小河坝组砂岩样品的稀土元素分析结果(表3.6)表明,在湘西的宣恩板寮、龙山水田坝、咸丰、永顺、花垣等地稀土总量(不包括Y)介于118.05~234.68μg/g之间,平均值为163.02μg/g。在川东南的南川、武隆、道真、秀山、酉阳、沿河、石柱漆辽、黔江石会等地稀土总量介于113.35~280.63μg/g之间,平均值为202.3μg/g。总体上,研究区志留系碎屑岩的稀土元素含量都明显高于大陆上地壳的平均稀土元素总量值(146.4μg/g),而比较接近北美页岩的平均值(173.2μg/g)。
其中,LREE/HREE为轻、重稀土元素比值,能够反映样品轻、重稀土的分异状况,在同一类岩石中,若该值较大,说明轻、重稀土分异明显,轻稀土元素相对富集,重稀土元素则相对亏损。川东南地区样品的LREE/HREE为4.41~10.81,平均值为9.05,在湘西样品的LREE/HREE为6.74~11.44,平均值为8.77,研究区都略高于北美页岩的比值(7.44),表明研究区相对富集轻稀土元素,重稀土相对亏损。
LaN/YbN是稀土元素球粒陨石标准化图解中分布曲线的斜率,反映曲线的倾斜程度。LaN/SmN、GdN/YbN分别反映了轻、重稀土元素之间的分馏程度,LaN/SmN值越大,表明轻稀土越富集;GdN/YbN值越小,表明重稀土越富集。川东南样品的LaN/YbN为2.23~12.57,平均值为10.52,湘西样品的LaN/YbN为8.69~13.61,平均值为10.05,表明研究区样品的轻、重稀土元素分异较大。LaN/SmN、GdN/YbN分别反映轻稀土元素之间、重稀土元素之间的分馏程度。川东南样品的LaN/SmN介于1.51~4.81之间,平均值为3.69,湘西地区样品的LaN/SmN介于之间2.62~4.01,平均值为3.51,表明研究区轻稀土元素之间分异明显;川东南地区样品的GdN/YbN介于1.52~2.86,平均值为1.95,湘西地区样品的GdN/YbN介于1.63~2.48,平均值为1.97,表明研究区重稀土元素之间分异不明显。
Eu具有明显的负异常,川东南地区样品的δEu为0.55~0.68,平均值为0.61,湘西地区的样品的δEu为0.55~0.70,平均值为0.63,研究区的δEu与北美页岩标准值(δEu=0.65)较为接近;川东南地区样品的δCe在0.66~0.96之间,平均值为0.94,湘西地区的样品的δCe在0.94~0.97之间,平均值为0.96,两区的δCe值基本正常。
(3)稀土元素的球粒陨石标准化配分模式
采用Leed球粒陨石(田彰正,1973)标准值对研究区志留系小河坝组砂岩样品进行标准化,其稀土元素配分模式基本类似,均为轻稀土元素富集、重稀土元素亏损型,分布曲线在轻稀土处具有较大的斜率,而在重稀土处较为平坦,Eu处出现一个明显“V”形,存在负Eu异常,表明沉积物的物源较为一致,物源相对稳定;从研究区稀土元素配分模式图3.6和图3.7可以看出La-Eu段轻稀土配分曲线较陡、斜率较大,表现为明显的“右倾”,说明轻稀土元素之间的分馏程度较高;Gd-Lu段重稀土配分曲线较为平坦、斜率较小,重稀土元素之间的分馏程度较低。
图3.6 湘西志留系小河坝组砂岩稀土元素配分模式
图3.7 川东南志留系小河坝组砂岩稀土元素配分模式
(4)稀土元素的物源分析
A.沉积速率
前人研究表明,稀土元素中各元素在电价、被吸附能力等性质上仍有一定的差异,随着环境的改变会发生分异,在海洋环境中尤为明显。主要表现为轻稀土元素与重稀土、铈(Ce)和铕(Eu)与其他元素间的分离。REE大部分被结合于碎屑矿物或以悬浮物入海,碎屑或悬浮颗粒在海水中停留时间的差异是造成REE分异程度不同的重要原因之一。当悬浮物在海水中停留时间较短时,REE随其快速沉积下来,与海水发生交换的机会少,分异弱,这种沉积物的页岩标准化的REE配分模式比较平缓,Ce呈正常型或弱负异常,曲线斜率Lan/Ybn值为1左右。当悬浮颗粒在海水中停留时间较长,即其沉降缓慢,促进了更细颗粒中的REE分解作用,使带入海水中的REE有足够的时间被粘土吸附、与有机质络合和进行相关的化学反应,导致REE的强烈分异,沉积物中页岩标准化稀土配分模式发生显著变化,含量上轻、重稀土元素出现亏损或富集,Lan/Ybn值明显大于1或小于1,Ce也发生选择性分异,氧化环境中易呈Ce4+沉淀,具显著负异常,而缺氧条件下负异常消失,甚至出现正异常。因此,可以认为REE的分异程度是沉积颗粒沉降速率快慢的响应。基于海水中粘土等细碎屑悬浮物是有机质和REE共同的“宿主”,有机质又是REE最强的吸附剂之一,二者具有共同的沉降速率。
本书将REE的分异程度作为一种指示剂来表征沉积物沉积速率。川东南地区志留系小河坝组砂岩Lan/Ybn值在0.62~1.85之间,均值为1.55(表3.7),湘西地区志留系小河坝组砂岩Lan/Ybn值在1.28~2.0之间,均值为1.48,从川东南到湘西地区Lan/Ybn的值逐步降低,表明沉积物的沉积速率有增加的趋势,反映了距物源近的特点。海水中有机质主要以颗粒状或细颗粒等形式沉淀,沉积颗粒的沉降速率对有机质的聚集和保存影响显著。研究区志留系小河坝期沉积速率普遍较高,使得龙马溪期沉积的有机质聚集和保存,这一点在前人对本区的有机碳含量研究上也有体现。总体上看,川东南地区沉积物的沉积速率较湘西低,表明湘西更接近物源区,其海水深度也较浅。
B.稀土元素对物源的指示意义
稀土元素在水体中停留的时间非常短,能够快速进入到细粒沉积物中且不发生分异,能更好地保留源区的地球化学信息(杨守业,1999;Cullers,1988),因此对沉积物具有示踪意义。杨守业等综合前人研究,认为控制沉积物中稀土元素组成最主要的因素是物源。在稀土元素示踪物源研究中,应注重稀土元素配分模式曲线的几何形态,而不是稀土元素的绝对丰度(赵振华,1997)。在实际应用中,研究者往往从配分模式曲线的特征来判断物质来源。相同来源的物质往往具有非常相似的稀土配分模式曲线,所以,在物源示踪研究中,稀土元素得到了广泛的应用。在反映盆地物源区性质的指标中,稀土元素分布模式是最可靠的指标之一。源自上地壳的稀元素具有轻稀土富集、重稀土含量稳定和明显负Eu异常等特征(McLennan,1995;Bhatia,1986)。本书做了川东南-湘西地区志留系小河坝组砂岩稀土元素样品Leed球粒陨石标准化的配分模式曲线(图3.6,3.7),稀土元素总体具有轻稀土富集、重稀土含量稳定、明显的负铕异常等特征,样品的球粒陨石标准化配分模式相似,均属轻稀土富集型,Ce基本正常。从研究区的稀土元素配分模式可以判断川东南-湘西地区志留系小河坝组的物源一致。总体显示出研究区志留系小河坝组砂岩与上地壳基本一致的分布模式,说明研究区志留系小河坝期沉积岩的原始物质应源自上地壳。
李双建和张廷山等对黔中隆起北侧的贵州习水喉滩、綦江观音桥志留系石牛栏组灰岩和靠近雪峰山隆起西北侧的湖南石门磺厂志留系罗惹坪组泥岩的稀土元素地球化学进行了研究(张廷山,1998;李双建,2008)。比较显示研究区地区的REE配分模式与石门磺石的罗惹坪组泥岩的REE配分模式(笔者采用Leed球粒陨石对参考文献中的数据进行统一标准化)十分接近(图3.8为本书数据,图3.9中的方形样品为贵州习水;三角形为湘西样品;菱形样品为湖北石门样品),都显示出轻稀土富集、重稀土相对亏损的右倾型,存在明显负Eu异常,Ce基本正常。且稀土元素各种特征参数比值都很接近,说明研究区与石门磺石具有相似的物质来源。而川东南地区的稀土元素配分模式图与靠近黔中隆起的贵州习水喉滩、綦江观音桥石牛栏组灰岩的稀土元素配分模式存在明显的不同。表明研究区与石门的罗惹坪组应为同源,而与贵州习水喉滩、綦江观音桥石牛栏组应不同源。
图3.8 湘西小河坝组砂岩稀土元素配分模式
图3.9 湘西地区侵入岩稀土元素配分模式(据刘钟伟,1994)
前人大量的研究结果表明,震旦纪-早志留世沉积时期,黔中隆起接受的是以碳酸盐岩为主的沉积,并且在其北侧未见有侵入岩体的报道,小河坝期若是黔中隆起向川东南地区提供的物源,那么在川东南地区的小河坝组砂岩应该体现碳酸盐岩作为物源的沉积记录,本次对研究区稀土测试研究结果显示,小河坝组砂岩物源区应为沉积岩与碱性玄武岩的混合区,所以物源只能是来自雪峰山隆起。同时与刘钟伟对湘西地区古丈、芷江、沅陵、怀化及通道一带侵入在新元古界板溪群(局部为下震旦统)中之北东向岩体的稀土元素配分模式相近(图3.9)。说明川东南志留系小河坝组砂岩的物源来自雪峰山隆起的新元古界板溪群及其侵入岩体。
据前人研究成果,川东南-湘西地区志留系小河坝组砂岩的物源来自雪峰山隆起南西段的古丈、芷江、沅陵、怀化及通道一带的新元古界板板溪群及其侵入板溪群中的基性-超基性岩体及中-基性喷出岩。小河坝组砂岩重砂矿物研究结果也证明了这一结论。
Bhatia et al.(1983,1986)在对澳大利亚东部不同大地构造背景的沉积盆地中砂岩和泥岩的稀土元素特征总结如表3.8。该表系统地揭示了稀土元素分布特征所反映的沉积盆地的大地构造背景和物源区类型。本书数据与表中数据对比显示,本区小河坝组砂岩的物源区与活动大陆边缘抬升基地类型相近。
表3.8 不同大地构造背景沉积盆地杂砂岩的稀土元素特征
川东南-湘西地区志留系小河坝组砂岩多表现明显负异常,应用上述稀土元素的特征进一步判断物源区的性质:根据轻重稀土比值与稀土总量图解(La/Yb-∑REE图解,底图据Alleyre,1978)。其投点主要分布在沉积岩和碱性玄武岩的交汇区,仅少数几个样品落在了沉积岩区(图3.10)。说明研究区志留系小河坝组砂岩的源区主要为沉积岩和碱性玄武岩混合区。
C. GdN/YbN比值与源区特征
在地球演化初期,Gd含量较高,随着元素分馏作用,Gd含量越来越小。Gd/Yb的比值也就随着地层时代的变新而逐渐变小(Taylor,1985;Mclennan,1993)。以Gd/Yb等于2.0为界,太古宇的Gd/Yb比值常大于2.0;而后太古宙的年轻地层则小于2.0。由于Gd和Yb在沉积过程中受地质作用的干扰较小,一旦封闭到沉积地层中,它们的含量就很难改变,因而可用它们判别母岩的特性。同样Gd/Yb的比值也是一个常用的判断沉积地层相对时间的方法,它具有随着地层时代的变新而逐渐变小的特点(邵磊等,2001)。
图3.10 川东南-湘西志留系小河坝砂岩La/Yb-∑REE图解(底图据Alleyre,1978)
川东南-湘西地区小河坝组砂岩37件Gd/Yb比值分析表明(图3.11),总体以2.0为界,样品数值全部在1.5~2.86,比较集中。可能反映其源岩类型比较单一。约76%的样品小于2.0。表明研究区志留系小河坝组砂岩的源岩地层时代主要以后太古宙地层为主;同时含有少量的太古宙地层的源岩。
图3.11 川东南-湘西地区小河坝组GdN-GdN/YbN关系图
关于“稀土农用的概述”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
本文来自作者[凡荷]投稿,不代表赤玉坊立场,如若转载,请注明出处:https://www68.cn/bkqs/202412-27707.html
评论列表(4条)
我是赤玉坊的签约作者“凡荷”!
希望本篇文章《稀土农用的概述》能对你有所帮助!
本站[赤玉坊]内容主要涵盖:国足,欧洲杯,世界杯,篮球,欧冠,亚冠,英超,足球,综合体育
本文概览:网上有关“稀土农用的概述”话题很是火热,小编也是针对稀土农用的概述寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。 稀土就是化学元素周...