网上科普有关“二年级小学生数学日记怎么写?”话题很是火热,小编也是针对二年级小学生数学日记怎么写?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
1、今天中午,我正在做数学暑假作业.写着写着,不幸遇到了一道很难的题,我想了半天也没想出个所1以然,这道题是这样的:?
有一个长方体,正面和上面的两个面积的积为209平方厘米,并且长、宽、高都是质数.求它的体积.。
我见了,心想:这道题还真是难啊!已知的只有两个面面积的积,要求体积还必须知道长、宽、高,而它一点也没有提示.这可怎么入手啊!?
正当我急得抓耳挠腮之际,我妈妈的一个同事来了.他先教我用方程的思路去解,可是我对方程这种方法还不是很熟悉.于是,他又教我另一种方法:先列出数,再逐一排除.我们先按题目要求列出了许多数字,如:3、5、7、11等一类的质数,接着我们开始排除,然后我们发现只剩下11和19这两个数字.这时,我想:这两个数中有一个是题中长方体正面,上面公用的棱长;一个则是长方体正面,上面除以上一条外另一条棱长(且长度都为质数)之和.于是,我开始分辩这两个数各是哪个数。
最后,我得到了结果,为374立方厘米.我的算式是:209=11×19 19=2+17 11×2×17374(立方厘米)。?
后来,我又用我本学期学过的知识:分解质因数验算了这道题,结果一模一样. 解出这道题后,我心里比谁都高兴.我还明白了一个道理:数学充满了奥秘,等待着我们去探求.?
2.今天晚上,我看见一道会迷惑人的数学题,题目:37个同学要渡河,渡口有一只能乘上5人的空小船,他们要全部渡过河,至少要使用这只小船多少次
粗心的人往往会忽略“空小船”,就是忘了要有一个撑船,那么每次只能乘4人.这样37人减去一位撑船的同学,剩36位同学,36除以4等于9,最后一次到对岸当船夫的同学也上岸4,所以至少要走9趟.?
3.傍晚,我在奥林匹克书中看到一道难题:果园里的苹果树是梨树的3倍,老王师傅每天给50棵苹果树20棵梨树施肥,几天后,梨树全部施上肥,但苹果树还剩下80棵没施肥.请问:果园里有苹果树和梨树各多少棵
我没有被这道题吓倒,难题能激发我的兴趣.我想,苹果树是梨树的3倍,假如要使两种树同一天施肥,老王师傅就应该每天给“20×3”棵苹果树和20棵梨树施肥.而实际他每天只给50棵苹果树施肥,差了10棵,最后共差了80棵,从这里可以得知,老王师傅已经施了8天肥.一天20棵梨树,8天就是160棵梨树,再根据第一个条件,可以知道苹果树是480棵.这就是用假设的思路来解题,因此我想假设法实在是一种很好的解题方法.?
4.今天我又遇到一道数学难题,费了好大的劲才解出来.题目是:两棵树上共有30只小鸟,乙树上先飞走4只,这时甲树飞向乙树3只,两棵树上的小鸟刚好相等.两棵树上原来各有几只小鸟
我一看完题目,就知道这是还原问题,于是用还原问题的方法解.可验算时却发现错了.我便更加认真地重新做起来.我想,少了4只后一样多,那一半是13只,还原乙树是14只;甲树就是16只.算式为:(30—4)÷2=13(只);13—3+4=14(只);30—14=16(只).答案为:甲树16只,乙树14只.?
通过解这道题,我明白了,无论做什么题,都要细心,否则,即使掌握了解题方法,结果还会出错.?
5.今天,我们一家去龙港的肯德基去吃全家套餐. 到了那儿,人一直挤着,我们好不容易点好菜,就找到位子坐下.菜来了,是一桶大套餐.里面有12个鸡腿,我想:怎么平均分呢?这时,我想起除法12÷3=4.我们每人四个鸡腿,我后来又吃了老妈的1个鸡腿,阿姨的2个鸡腿,阿姨说:“这总不能白吃,我问你,你吃了几分之几?你再吃几份就全吃了?“我想了想,回答:“我吃了7/12,再吃5/12就全吃了.”幸好,我学了分数的知识,可以正确回答问题了.?
6.今天,妈妈给了我10元钱去超市买东西.我买了一串鞭炮用了钱的2/10,又买了棒棒糖四根用了钱的1/10,还买了7个汽球,用了钱的2/10,最后买了一把梳子,用了钱的4/10,一共用了2/10+1/10+2/10+4/10=9/10.还剩下一元钱只好还给妈妈了.?
到家后,妈妈吃了棒棒糖的1/4,爸爸吃了棒棒糖的1/4, 我吃了棒棒糖的1/4,还剩下一根,我送给了隔壁的小强哥哥吃.(作者:肖恩玲)?
7.上个星期,我们学习了分数.分数有分子、分母和分数线,比如:1/3,3是分母,1是分子,中间一横是分数线.?
活中有很多地方都要用到分数,比如:一本书有三十页,每一页是一本书的1/30.分数还可以用来加减呢!比如:二分之一加二分之一等于二分之二,也就是1.为什么会这样呢?如果一个饼把它平均分成两份,每份就是这个饼的1/2,再把这两份拼起来,就是有2个1/2,刚好是一个饼.分数在加减时,如果分母都是一样的,就不管分母,把分子相加就可以了.而2/2的分子和分母都一样,就是1了. 我还学会了比分数的大小,老师教了我们口诀:分子相同比分母,分母大的分数小,分母小的分数大;分母相同比分子,分子大的分数大,分子小的分数小. 老师还提醒我们,写分数时,一般先写分数线,表示平均分的意思,再写分母,最后写分子.
数学小知识20字二年级
二年级数学小知识手抄报内容:数学知识、数学题目、数学家的故事、数学应用、数学学习方法。
1、数学知识:可以介绍一些有趣的数学概念、公式、定理、历史故事等,例如勾股定理、黄金分割、圆周率等。
2、数学题目:可以出一些数学题目,例如趣味数学题、智力题、应用题等,供读者思考和挑战。
3、数学家的故事:可以介绍一些数学家的生平和贡献,例如阿基米德、高斯、欧拉等。
4、数学应用:可以介绍数学在生活中的应用,例如在建筑、艺术、经济等领域中的应用。
5、数学学习方法:可以分享一些学习数学的方法和技巧,例如如何提高计算能力、如何理解数学概念等。
数学的作用和意义:
1、解决实际问题:数学是一种工具,它可以帮助我们解决许多实际问题,如计算成本、解决几何问题、进行统计分析和预测等。
2、培养思维能力:数学是一种训练思维能力的有效方式。通过学习数学,我们可以锻炼逻辑推理、抽象思维、想象力和创造力等方面的能力,提高解决问题的能力。
3、促进其他学科的学习:数学是许多其他学科的基础,如物理、化学、计算机科学等。掌握数学基础知识,有助于我们更好地理解和应用这些学科的知识。
4、在社会中的应用:数学在社会中有着广泛的应用,如金融、经济、工程、科学和医学等领域。在这些领域中,数学被用来分析和解决问题,为我们的生活提供了更多的便利和安全。
数学小论文二年级怎么写
1. 数学小知识20字
数学小知识20字 1. 20个字的数学小知识
人们把12345679叫做“缺8数”,这“缺8数”有许多让人惊讶的特点,比如用9的倍数与它相乘,乘积竟会是由同一个数组成,人们把这叫做“清一色”。比如:
12345679*9=111111111
12345679*18=222222222
12345679*27=333333333
……
12345679*81=999999999
这些都是9的1倍至9的9倍的。
还有99、108、117至171。最后,得出的答案是:
12345679*99=1222222221
12345679*108=1333333332
12345679*117=1444444443
… …
12345679*171=2111111109
也是“清一色
2. 数学趣味小知识 简短的 20到50字左右
趣味数学小知识
数论部分:
1、没有最大的质数。欧几里得给出了优美而简单的证明。
2、哥德巴赫猜想:任何一个偶数都能表示成两个质数之和。陈景润的成果为:任何一个偶数都能表示成一个质数和不多于两个质数的乘积之和。
3、费马大定理:x的n次方+y的n次方=z的n次方,n>2时没有整数解。欧拉证明了3和4,1995年被英国数学家 安德鲁*怀尔斯 证明。
拓扑学部分:
1、多面体点面棱的关系:定点数+面数=棱数+2,笛卡尔提出,欧拉证明,也称欧拉定理。
2、欧拉定理推论:可能只有5种正多面体,正四面体,正八面体,正六面体,正二十面体,正十二面体。
3、把空间翻过来,左手系的物体就能变成右手系的,通过克莱因瓶模拟,一节很好的头脑体操,
摘自:/bbs2/ThreadDetailx?id=31900
3. 数学课外小知识
数学知识《几何原本》几 何原本《几何原本》是古希腊数学家欧几里得的一部不朽之作,是当时整个希腊数学成果、方法、思想和精神的结晶,其内容和形式对几何学本身和数学逻辑的发展有着巨大的影响.自它问世之日起,在长达二千多年的时间里一直盛行不衰.它历经多次翻译和修订,自1482年第一个印刷本出版后,至今已有一千多种不同的版本.除了《圣经》之外,没有任何其他著作,其研究、使用和传播之广泛,能够与《几何原本》相比.但《几何原本》超越民族、种族、宗教信仰、文化意识方面的影响,却是《圣经》所无法比拟的. 公元前7世纪之后,希腊几何学迅猛地发展,积累了丰富的材料.希腊学者们开始对当时的数学知识作有计划的整理,并试图将其组成一个严密的知识系统.首先做出这方面尝试的是公元前5世纪的希波克拉底(Hippocrates),其后经过了众多数学家的修改和补充.到了公元前4世纪时,希腊学者们已经为建构数学的理论大厦打下了坚实的基础.欧几里得在前人工作的基础之上,对希腊丰富的数学成果进行了收集、整理,用命题的形式重新表述,对一些结论作了严格的证明.他最大的贡献就是选择了一系列具有重大意义的、最原始的定义和公理,并将它们严格地按逻辑的顺序进行排列,然后在此基础上进行演绎和证明,形成了具有公理化结构的,具有严密逻辑体系的《几何原本》.《几何原本》的希腊原始抄本已经流失了,它的所有现代版本都是以希腊评注家泰奥恩(Theon,约比欧几里得晚七百年)编写的修订本为依据的.《几何原本》的泰奥恩修订本分13卷,总共有465个命题,其内容是阐述平面几何、立体几何及算术理论的系统化知识.第一卷首先给出了一些必要的基本定义、解释、公设和公理,还包括一些关于全等形、平行线和直线形的熟知的定理.该卷的最后两个命题是毕达哥拉斯定理及其逆定理.这里我们想到了关于英国哲学家T.霍布斯的一个小故事:有一天,霍布斯在偶然翻阅欧几里得的《几何原本》,看到毕达哥拉斯定理,感到十分惊讶,他说:“上帝啊!这是不可能的.”他由后向前仔细阅读第一章的每个命题的证明,直到公理和公设,他终于完全信服了. 第二卷篇幅不大,主要讨论毕达哥拉斯学派的几何代数学.第三卷包括圆、弦、割线、切线以及圆心角和圆周角的一些熟知的定理.这些定理大多都能在现在的中学数学课本中找到.第四卷则讨论了给定圆的某些内接和外切正多边形的尺规作图问题.第五卷对欧多克斯的比例理论作了精彩的解释,被认为是最重要的数学杰作之一.据说,捷克斯洛伐克的一位并不出名的数学家和牧师波尔查诺(Bolzano,1781-1848),在布拉格度假时,恰好生病,为了分散注意力,他拿起《几何原本》阅读了第五卷的内容.他说,这种高明的方法使他兴奋无比,以致于从病痛中完全解脱出来.此后,每当他朋友生病时,他总是把这作为一剂灵丹妙药问病人推荐.第七、八、九卷讨论的是初等数论,给出了求两个或多个整数的最大公因子的“欧几里得算法”,讨论了比例、几何级数,还给出了许多关于数论的重要定理.第十卷讨论无理量,即不可公度的线段,是很难读懂的一卷.最后三卷,即第十一、十二和十三卷,论述立体几何.目前中学几何课本中的内容,绝大多数都可以在《几何原本》中找到.《几何原本》按照公理化结构,运用了亚里士多德的逻辑方法,建立了第一个完整的关于几何学的演绎知识体系.所谓公理化结构就是:选取少量的原始概念和不需证明的命题,作为定义、公设和公理,使它们成为整个体系的出发点和逻辑依据,然后运用逻辑推理证明其他命题.《几何原本》成为了两千多年来运用公理化方法的一个绝好典范.诚然,正如一些现代数学家所指出的那样,《几何原本》存在着一些结构上的缺陷,但这丝毫无损于这部著作的崇高价值.它的影响之深远.使得“欧几里得”与“几何学”几乎成了同义语.它集中体现了希腊数学所奠定的数学思想、数学精神,是人类文化遗产中的一块瑰宝.哥德巴赫猜想 哥 德巴赫猜想 1742年德国人哥德巴赫给当时住在俄国彼得堡的大数学家欧拉写了一封信,在信中提出两个问题:第一,是否每个大于4的偶数都能表示为两个奇质数之和?如6=3+3,14=3+11等.第二,是否每个大于7的奇数都能表示3个奇质数之和?如9=3+3+3,15=3+5+7等.这就是著名的哥德巴赫猜想.它是数论中的一个著名问题,常被称为数学皇冠上的明珠. 实际上第一个问题的正确解法可以推出第二个问题的正确解法,因为每个大于 7的奇数显然可以表示为一个大于4的偶数与3的和.1937年,苏联数学家维诺格拉多夫利用他独创的“三角和”方法证明了每个充分大的奇数可以表示为3个奇质数之和,基本上解决了第二个问题.但是第一个问题至今仍未解决.由于问题实在太困难了,数学家们开始研究较弱的命题:每个充分大的偶数可以表示为质因数个数分别为m、n的两个自然数之和,简记为“m+n”.1920年挪威数学家布龙证明了“9+9”;以后的20几年里,数学家们又陆续证明了“7+7”,“6+6”,“5+5”,“4+4”,“1+c”,其中c是常数.1956年中国数学家王元证明了“3+4”,随后又证明了“3+3”,“2+3”。
4. 收集20个数学小常识
1。
对顶角相等. 2。圆周率是一个无理数。
3。三角形内角和为180度 4。
多边形内角和为(边数-2)*180度 5。多边形外角和恒等于360度 6。
一次函数的图象是一根直线。 7。
正比例函数的图象是一根过原点的直线。 8。
反比例函数的图象是双曲线。 9。
两次函数的图象是抛物线。 10。
同底数幂相乘,底数不变,指数相加。 11。
两条平行线被第三条直线所截,同位角相等。 12。
两条平行线被第三条直线所截,内错角相等。 13。
两条平行线被第三条直线所截,同旁内角互补。 14。
一个三角形的三条中线交于一点,这个点叫做重心。 15。
一个三角形的三个角的角平分线交于一点,这个点叫做内心。 16。
一个三角形三边上的三条高交于一点,这个点叫做垂心。 17。
一个三角形三边的中垂线交于一点,这个点叫做外心。 18。
同底等高的两个三角形面积相等。 19。
1+2+3+……+n=(1+n)*n/2 20。 Sin90=1,Cos90=0,Sin0=0,Cos0=1。
5. 关于数学的小知识
杨辉三角是一个由数字排列成的三角形数表,一般形式如下: 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 … … … … … 杨辉三角最本质的特征是,它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和。
其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。
杨辉,字谦光,北宋时期杭州人。在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图。
而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。现在要求我们用编程的方法输出这样的数表。
同时 这也是多项式(a+b)^n 打开括号后的各个项的二次项系数的规律 即为 0 (a+b)^0 (0 nCr 0) 1 (a+b)^1 (1 nCr 0) (1 nCr 1) 2 (a+b)^2 (2 nCr 0) (2 nCr 1) (2 nCr 2) 3 (a+b)^3 (3 nCr 0) (3 nCr 1) (3 nCr 2) (3 nCr 3) . 。 。
。 。
。 因此 杨辉三角第x层第y项直接就是 (y nCr x) 我们也不难得到 第x层的所有项的总和 为 2^x (即(a+b)^x中a,b都为1的时候) [ 上述y^x 指 y的 x次方;(a nCr b) 指 组合数] 其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。
中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。 杨辉,字谦光,北宋时期杭州人。
在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图。 而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。
具体的用法我们会在教学内容中讲授。 在国外,这也叫做"帕斯卡三角形"。
6. 数学小知识
这是一个有趣的数学常识,做数学报用上它也很不错。
人们把12345679叫做“缺8数”,这“缺8数”有许多让人惊讶的特点,比如用9的倍数与它相乘,乘积竟会是由同一个数组成,人们把这叫做“清一色”。比如: 12345679*9=111111111 12345679*18=222222222 12345679*27=333333333 …… 12345679*81=999999999 这些都是9的1倍至9的9倍的。
还有99、108、117至171。最后,得出的答案是: 12345679*99=1222222221 12345679*108=1333333332 12345679*117=1444444443 … … 12345679*171=2111111109 也是“清一色数学小常识(转载) [ 2007-11-28 12:58:00 | By: gnwz ] 数学小常识1.悖论: (1)罗素悖论 一天,萨维尔村理发师挂出了一块招牌:村里所有不自己理发的男人都由我给他们理发。
于是有人问他:“您的头发谁给理呢?”理发师顿时哑口无言。 1874年,德国数学家康托尔创立了 *** 论,很快渗透到大部分数学分支,成为它们的基础。
到十九世纪末,全部数学几乎都建立在 *** 论的基础上了。就在这时, *** 论接连出现了一系列自相矛盾的结果。
特别是1902年罗素提出理发师故事反映的悖论,它极为简单、明确、通俗。于是,数学的基础被动摇了,这就是所谓的第三次“数学危机”。
此后,为了克服这些悖论,数学家们做了大量研究工作,由此产生了大批新成果,也带来了数学观念的革命。 (2)说谎者悖论: “我正在说的这句话是慌话。”
公元前四世纪的希腊数学家欧几里德提出的这个悖论,至今还在困扰着数学家和逻辑学家。这就是著名的说慌者悖论。
类似的悖论最早是在公元前六世纪出现的,当时克里特岛哲学家爱皮梅尼特曾说过:“所有的克里特岛人都说慌。”在中国古代《墨经》中,也有一句十分相似的话:“以言为尽悖,悖,说在其言。”
意思是:以为所有的话都是错的,这是错的,因为这本身就是一句话。 说慌者悖论有多种变化形式,例如,在同一张纸上写出下列两句话: 下一句话是慌话。
上一句话是真话。 更有趣的是下面的对话。
甲对乙说:“你下面要讲的是‘不’,对不对?请用‘是’或‘不’来回答!” 还有一个例子。有个虔诚的教徒,他在演说中口口声声说上帝是无所不能的,什么事都做得到。
一位过路人问了一句话:“上帝能创造一块他自己也举不起来的石头吗?” 2. *** 数字 在生活中,我们经常会用到0、1、2、3、4、5、6、7、8、9这些数字。那么你知道这些数字是谁发明的吗? 这些数字符号原来是古代印度人发明的,后来传到 *** ,又从 *** 传到欧洲,欧洲人误以为是 *** 人发明的,就把它们叫做“ *** 数字”,因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做 *** 数字。
现在, *** 数字已成了全世界通用的数字符号。
写二年级数学小论文的方法包括以下步骤:引入问题或概念、解决问题的过程和具体例子、提高数学素养、总结和结论。
1、解决问题的过程和具体例子
在这一部分,将详细介绍解决问题的过程和给出具体的例子。以数字比较为例,将讲解比较符号的含义和使用方法,并通过几个具体的数字比较的例子来说明。将包括大于、小于和等于的比较,以及使用比较符号进行数字比较的步骤和技巧。
2、提高数学素养
接下来,将扩展讨论如何提高二年级学生的数学素养。将列举一些方法和活动,创造性活动、多媒体教学和实践应用等。将涉及数学游戏化学习、实物操作、动画与视频的利用、数学在日常生活中的应用以及探索数学的美妙之处等。
3、总结和结论
在小论文的结尾部分,将对所讨论的问题和方法进行总结,并得出结论。将强调数学在日常生活中的重要性和实用性,鼓励学生对数学保持兴趣和积极的学习态度。
提高数学素养、举一反三
1、解决问题的过程和具体例子
探讨更多复杂情况下的数字比较,如多位数的比较、带有小数的比较等,并通过实际生活中的例子来加深理解。我们将引导学生进行互动参与,让自己比较数字并解释比较结果。通过更多的例子和练习,学生将能够更好地掌握数字比较的技巧和方法。
2、提高数学素养
进一步拓展提高数学素养的方法和活动。引入数学游戏和谜题,激发学生的思维和解决问题的能力。同时,介绍数学奥赛和竞赛活动,培养学生的竞争意识和自信心。还将探索数学与其他学科的联系,如数学与艺术、科学的结合,培养学生的跨学科思维。
3、举一反三
引导学生将所学的数学知识应用到其他问题中。通过实例演示如何使用数字比较和排序解决购物清单的问题,或者如何利用数学知识计算一个活动队伍的人数。这样的实际应用场景有助于学生将抽象的数学概念与实际问题联系起来,提高问题解决能力和创新思维。
关于“二年级小学生数学日记怎么写?”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
本文来自作者[梦容]投稿,不代表赤玉坊立场,如若转载,请注明出处:https://www68.cn/bkqs/202412-2297.html
评论列表(4条)
我是赤玉坊的签约作者“梦容”!
希望本篇文章《二年级小学生数学日记怎么写?》能对你有所帮助!
本站[赤玉坊]内容主要涵盖:国足,欧洲杯,世界杯,篮球,欧冠,亚冠,英超,足球,综合体育
本文概览:网上科普有关“二年级小学生数学日记怎么写?”话题很是火热,小编也是针对二年级小学生数学日记怎么写?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够...