网上科普有关“五年级数学有哪些内容”话题很是火热,小编也是针对五年级数学有哪些内容寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
问题一:小学五年级数学重要内容有哪些 下册的有因数倍数、长方体和正方体、分数.上册的有解方程、多边形面积(平行四边形、三角形、梯形),小数乘除法有点重要.
问题二:五年级数学下学期主要学习什么内容 我们有的是人教版:
第一单元:看立体图形
第二单元:因数和倍数、质数合数、
第三单元:长方体和正方体(表面积、体积)
第四单元:分数的认识、意义
第五单元:最大公因数、最小公倍数
第六单元:分数的加减法
数学广角
问题三:小学五年级数学学习重点有哪些 其中,小数的乘法和除法是为了让在学生再掌握了整数的加减乘除运算、小数的性质以及小数加法、减法的基础上进行的运算,目的是培养学生小数的乘除法运算能力。简单方程中的难点有:用字母表示数字、等式有哪些性质、解简易方程、用简易方程表示相等关系,从而解决一些实际数学问题等内容,最终目的是为了发展学生的思维能力,提高解决实际问题的能力。学生在学习过程中要抓住这些重点,多加练习,达到触类旁通的效果。在几何图形这类题上,本年级安排了多边形的面积、周长计算两个单元。着重让学生认识各种图形的特征、图形之间关系以及图形之间的相互转化,掌握四边形、三角形、面积公式,在解决这些题目时,通常会用到平移、旋转等方法。统计与概率也是小学五年级数学学习重点之一,在统计与概率方面,小学五年级着重让学生学习有关可能性的知识,即不可能事件、可能事件等。在教学中,老师重点通过实验向学生证明事件的可能性,让学生学会处理一些事件发生的可能性。综上所述,要清楚小学五年级数学学习重点,首先得全面了解小学五年级数学教材中具体包括哪些方面的内容,然后结合老师课堂讲授的重点,判断哪些内容是本年级学习的重点。然后通过多做练习,总结同类题型的规律,做到触类旁通。不要忽视的是,数学学习中同样需要记忆,比如公式,但是这种记忆需要结合具体题型,而不是死记硬背。
问题四:小学五年级下册数学有哪些内容 观察物体
因数和倍数
长方体和正方体
探索图形
分数的意义和性质
图形的运动三
其中的二、三、五单元为学期重点。
问题五:小学5年级数学都学哪些内容最好有小学5年级数学书的目录 1、小数乘法
2、小数除法
3、观察物体
4、简易方程
5、多边形面积(三角形、平行四边形、梯形、组合图形)
6、统计与可能性
7、数学广角
8、总复习
五年级下册目录
1 图形的变换.2
2 因数与倍数.12
3.长方体和正方体.27
粉刷围墙.58
4.分数的意义和性质.60
5.分数的加法和减法.104
6.统计.122
打电话.132
7数学广角.134
8总复习.138
问题六:人教版小学数学五年级上册知识点有哪些 小学五年级数学上册复习教学知识点归纳总结
第一单元小数乘法
1、小数乘整数(P2、3):意义――求几个相同加数的和的简便运算.
如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算.
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点.
2、小数乘小数(P4、5):意义――就是求这个数的几分之几是多少.
如:1.5×0.8就是求1.5的十分之八是多少.
1.5×1.8就是求1.5的1.8倍是多少.
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点.
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位.
3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;
一个数(0除外)乘小于1的数,积比原来的数小.
4、求近似数的方法一般有三种:(P10)
⑴四舍五入法;⑵进一法;⑶去尾法
5、计算钱数,保留两位小数,表示计算到分.保留一位小数,表示计算到角.
6、(P11)小数四则运算顺序跟整数是一样的.
7、运算定律和性质:
加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)
减法:减法性质:a-b-c=a-(b+c) a-(b-c)=a-b+c
乘法:乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c
除法:除法性质:a÷b÷c=a÷(b×c)
第二单元小数除法
8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算.
如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算.
9、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除.,商的小数点要和被除数的小数点对齐.整数部分不够除,商0,点上小数点.如果有余数,要添0再除.
10、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算.
注意:如果被除数的位数不够,在被除数的末尾用0补足.
11、(P23)在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数.
12、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变.②除数不变,被除数扩大,商随着扩大.③被除数不变,除数缩小,商扩大.
13、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数.
循环节:一个循环小数的小数部分,依次不断重复出现的数字.如6.3232……的循环节是32.
14、小数部分的位数是有限的小数,叫做有限小数.小数部分的位数是无限的小数,叫做无限小数.
第三单元观察物体
15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面.
第四单元简易方程
16、(P45)在含有字母的式子里,字母中间的乘号可以记作“?”,也可以省略不写.
加号、减号除号以及数与数之间的乘号不能省略.
17、a×a可以写作a?a或a ,a 读作a的平方. 2a表示a+a
18、方程:含有未知数的等式称为方程.
使方......>>
小学五年级数学苏教版下册知识整理!急!
其中,小数的乘法和除法是为了让在学生再掌握了整数的加减乘除运算、小数的性质以及小数加法、减法的基础上进行的运算,目的是培养学生小数的乘除法运算能力。简单方程中的难点有:用字母表示数字、等式有哪些性质、解简易方程、用简易方程表示相等关系,从而解决一些实际数学问题等内容,最终目的是为了发展学生的思维能力,提高解决实际问题的能力。学生在学习过程中要抓住这些重点,多加练习,达到触类旁通的效果。
在几何图形这类题上,本年级安排了多边形的面积、周长计算两个单元。着重让学生认识各种图形的特征、图形之间关系以及图形之间的相互转化,掌握四边形、三角形、面积公式,在解决这些题目时,通常会用到平移、旋转等方法。
统计与概率也是小学五年级数学学习重点之一,在统计与概率方面,小学五年级着重让学生学习有关可能性的知识,即不可能事件、可能事件等。在教学中,老师重点通过实验向学生证明事件的可能性,让学生学会处理一些事件发生的可能性。
综上所述,要清楚小学五年级数学学习重点,首先得全面了解小学五年级数学教材中具体包括哪些方面的内容,然后结合老师课堂讲授的重点,判断哪些内容是本年级学习的重点。然后通过多做练习,总结同类题型的规律,做到触类旁通。不要忽视的是,数学学习中同样需要记忆,比如公式,但是这种记忆需要结合具体题型,而不是死记硬背。
五年级数学上册归纳整理第一单元小数除法的知识点
第一单元 方程
1、表示相等关系的式子叫做等式。
2、含有未知数的等式是方程。
3、方程一定是等式;等式不一定是方程。等式>方程
4、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。
等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。这也是等式的性质。
5、求方程中未知数的过程,叫做解方程。
解方程时常用的关系式:
一个加数=和-另一个加数 减数=
-差
=减数+差
一个因数=积÷另一个因数 除数=
÷商
=商×除数
注意:解完方程,要养成检验的好习惯。
6、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数
7、4个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和×个数÷2(高斯求和公式)
8、列方程
的思路:A、审题并弄懂题目的已知条件和所求问题。B、理清题目的
。C、设未知数,一般是把所求的数用X表示。D、根据
列出方程E、解方程F、检验G、作答。
第二单元 确定位置
1、确定位置时,竖排叫做列,横排叫做行。确定第几列一般从左往右数,确定第几行一般从前往后数。
2、数对(x,y)第1个数表示第几列(x),第2个数表示第几行(y),写数对时,是先写列数,再写行数。
3、从
上看,连接北极和南极两点的是经线,垂直于经线的线圈是
,经线和
、分别按一定的顺序编排表示“
”和“纬度”,“
”和“纬度”都用度(°)、分(′)、秒(″)表示。
4、将某个点向左右平移几格,只是列(x)上的数字发生加减变化,向左减,向右加,行(y)上的数字不变。举例:将点(6,3)的位置向右平移2个单位后的位置是(8,3),列6+2=8;将点(6,3)的位置向左平移2个单位后的位置是(4,3),列6-2=4。
5、将某个点向上下平移几格,只是行(y)上的数字发生加减变化,向上减,向下加,列(x)上的数字不变。举例:将点(6,3)的位置向上平移2个单位后的位置是(6,5),行3+2=5;将点(6,3)的位置向下平移2个单位后的位置是(6,1),列3-2=1。
第三单元 公倍数和
1、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。
一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。
一个数最大的因数等于这个数最小的倍数。
2、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,用符号[ ,]表示。几个数的公倍数也是无限的。
3、两个数公有的因数,叫做这两个数的
,其中最大的一个,叫做这两个数的最大
,用符号( , )。两个数的公因数也是有限的。
4、两个素数的积一定是
。举例:3×5=15,15是
5、两个数的最小公倍数一定是它们的最大公因数的倍数。举例:[6,8]=24,(6,8)=2,24是2的倍数。
6、求最大公因数和最小公倍数的方法:
倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。举例:15和5,[15,5]=15,(15,5)=5
素数关系的两个数,最大公因数是1,最小公倍数是它们的乘积。举例:[3,7]=21,(3,7)=1
一个素数和一个
,最大公因数是1,最小公倍数是它们的乘积。[5,8]=40,(5,8)=1
的两个数,最大公因数是1,最小公倍数是它们的乘积。[9,8]=72,(9,8)=1
的数(两个都是合数,一个是奇数,一个是偶数,但他们之间只有一个公因数1),比如4和9、4和15、10和21,最大公因数是1,最小公倍数是它们的乘积。
一般关系的两个数,求最大公因数用
或
,求最小公倍数用大数翻倍法或
。(详见课本31页内容)
数字与信息
1、我国目前采用的邮政编码为“四级六码”制。第一、二位代表省(自治区、直辖市),第三位代表邮区,第四位代表县(市)邮电局,最后两位是投递局(区)的编号。
2、身份证编码规则:1-6位数字为
,其中1、2位数为各省级政府的代码,3、4位数为地、市级政府的代码,5、6位数为县、区级政府代码。 7-14位为您的出生日期,其中7-10位为出生年份(4位),11-12位为出生月份,13-14位为出生日期,15-17位为
,是县、区级政府所辖派出所的分配码,其中单数为男性分配码,双数为女性分配码。18位为
,是由号码编制单位按照统一的公式计算得出来的,其取值范围是0至10,当值等于10时,用
符χ表示。
小学五年级数学上册期末复习知识点归纳
第一单元小数乘法
1、小数乘整数(P2、3):意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数(P4、5):意义——就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少。
1.5×1.8就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;
一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:(P10)
⑴四舍五入法;⑵进一法;⑶去尾法
5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。
6、(P11)小数四则运算顺序跟整数是一样的。
7、运算定律和性质:
加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)
减法:减法性质:a-b-c=a-(b+c) a-(b-c)=a-b+c
乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c
除法:除法性质:a÷b÷c=a÷(b×c)
第二单元小数除法
8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。
9、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。,商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
10、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
注意:如果被除数的位数不够,在被除数的末尾用0补足。
11、(P23)在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。
12、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。
②除数不变,被除数扩大,商随着扩大。③被除数不变,除数缩小,商扩大。
13、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。 循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32.
14、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。
第三单元观察物体
15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
第四单元简易方程
16、(P45)在含有字母的式子里,字母中间的乘号可以记作“?”,也可以省略不写。
加号、减号除号以及数与数之间的乘号不能省略。
17、a×a可以写作a?a或a ,a 读作a的平方。 2a表示a+a
18、方程:含有未知数的等式称为方程。
使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
19、解方程原理:天平平衡。
等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。
20、10个数量关系式:加法:和=加数+加数 一个加数=和-两一个加数
减法:差=被减数-减数 被减数=差+减数 减数=被减数-差
乘法:积=因数×因数 一个因数=积÷另一个因数
除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商
21、所有的方程都是等式,但等式不一定都是方程。
22、方程的检验过程:方程左边=…… 方程右边=…… 所以,X=…是方程的解。 23、方程的解是一个数;
解方程式一个计算过程。
第五单元多边形的面积
23、公式:长方形:周长=(长+宽)×2——长=周长÷2-宽;宽=周长÷2-长 字母公式:C=(a+b)×2
面积=长×宽 字母公式:S=ab
正方形:周长=边长×4 字母公式:C=4a
面积=边长×边长 字母公式:S=a
平行四边形的面积=底×高 字母公式: S=ah
三角形的面积=底×高÷2 ——底=面积×2÷高;高=面积×2÷底 字母公式: S=ah÷2
梯形的面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2
——上底=面积×2÷高-下底,下底=面积×2÷高-上底;高=面积×2÷(上底+下底)
24、平行四边形面积公式推导:剪拼、平移 25、三角形面积公式推导:旋转
平行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个平行四边形,
长方形的长相当于平行四边形的底; 平行四边形的底相当于三角形的底;
长方形的宽相当于平行四边形的高; 平行四边形的高相当于三角形的高;
长方形的面积等于平行四边形的面积, 平行四边形的面积等于三角形面积的2倍,
因为长方形面积=长×宽,所以平行四边形面积=底×高。 因为平行四边形面积=底×高,所以三角形面积=底×高÷2
26、梯形面积公式推导:旋转 27、三角形、梯形的第二种推导方法老师已讲,自己看书
两个完全一样的梯形可以拼成一个平行四边形, 知道就行。
平行四边形的底相当于梯形的上下底之和;
平行四边形的高相当于梯形的高;
平行四边形面积等于梯形面积的2倍,
因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2
28、等底等高的平行四边形面积相等;等底等高的三角形面积相等;
等底等高的平行四边形面积是三角形面积的2倍。
29、长方形框架拉成平行四边形,周长不变,面积变小。
30、组合图形:转化成已学的简单图形,通过加、减进行计算。
第六单元统计与可能性
31、平均数=总数量÷总份数
32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适。
第七单元数学广角
33、数不仅可以用来表示数量和顺序,还可以用来编码。
34、邮政编码:由6位组成,前2位表示省(直辖市、自治区) 0 5 4 0 0 1
前3位表示邮区
前4位表示县(市)
最后2位表示投递局
35、身份证号码:18位
1 3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9
河北省 邢台市 邢台县 出生日期 顺序码 校验码
倒数第二位的数字用来表示性别,单数表示男,双数表示女。
第一单元 倍数与因数(我们只在自然数(0除外)范围内研究倍数和因数。)
1、像0、1、2、3、4、5、6……这样的数是自然数。
2、像-3、-2、-1、0、1、2、3……这样的数是整数。3、整数与自然数的关系:整数包括自然数。
4、倍数和因数: 举例如4×5=20,20是4和5的倍数,4和5是20的因数,倍数和因数是相互依存的。
5、找倍数:从1倍开始有序的找。
6、一个数倍数的特点: ①一个数的倍数的个数是无限的;
②最小的倍数是它本身;
③没有最大的倍数。
7、找因数:找一个数的因数,一对一对有序的找较好。
8、一个数因数的特点: ①一个数的因数的个数是有限的;
②最小的因数是1;
③最大的因数是它本身。
9、2的倍数的特征:个位是0、2、4、6、8的数是2的倍数。
10、奇数和偶数:是2的倍数的数叫偶数,不是2的倍数的数叫奇数。
按一个数是不是2的倍数来分,自然数可以分成两类:奇数和偶数
11、5的倍数的特征:个位是0或5的数是5的倍数。
12、3的倍数的特征:各个数位上的数字的和是3的倍数,这个数就是3的倍数。
13、既是2的倍数又是5的倍数的特征:个位是0的数。
既是2的倍数又是3的倍数的特征:①个位是0、2、4、6、8的数;
②各个数位上的数字的和是3的倍数
既是3的倍数又是5的倍数的特征:①个位是0或5的数;
②各个数位上的数字的和是3的倍数
既是2的倍数又是3的倍数还是5的倍数的特征: ①个位是0的数;
②各个数位上的数字的和是3的倍数
9的倍数的特征:各个数位上的数字的和是9的倍数,这个数就是9的倍数
14、质数:一个数只有1和它本身两个因数,这个数叫质数。最小的质数是2,是唯一的质数中的偶数。
100以内的质数:
15、合数:一个数除了1和它本身以外还有别的因数,这个数叫合数。
1既不是质数也不是合数,最小的合数是4.
16、按一个数的因数个数分,自然数可以分为三类。
第二单元 图形的面积(一)
1、 长方形周长=(长+宽)×2 C = 2 ( a + b )
2、 长方形面积=长×宽 S = a b
3、 正方形周长=边长×4 C = 4 a
4、 正方形面积=边长×边长 S = a 2
5、 平行四边形面积=底×高 S = a h
6、 平行四边形底=面积÷高 a = S ÷ h
7、 平行四边形高=面积÷底 h = S ÷ a
8、 三角形面积=底×高÷2 S = a h ÷ 2
9、 三角形底=面积×2÷高 a = 2 S ÷ h
10、 三角形高=面积×2÷底 h = 2 S ÷ a
11、 梯形面积=(上底+下底)×高÷2 S = ( a + b ) h ÷ 2
12、 梯形高=梯形面积×2÷(上底+下底) h = 2 S ÷( a + b )
13、 梯形上底=梯形面积×2÷高-下底 a = 2 S ÷ h - b
14、 梯形下底=梯形面积×2÷高-上底 b = 2 S ÷ h - a
15、 1平方千米=100公顷=1000000平方米
16、 1公顷=10000平方米
17、 1平方米=100平方分米=10000平方厘米
第三单元 分数
1、 分数:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
2、 分母:表示平均分的份数。分子:表示取出的份数。
3、 分数单位:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做
分数。表示其中的一份的数,叫做这个分数的分数单位。
4、 真分数:分子小于分母的分数叫做真分数。真分数小于1。
5、 假分数:分子大于或等于分母的分数,叫做假分数。假分数都大于或等于1。
6、 带分数:由整数和真分数组成的分数叫做带分数。
7、 假分数化成带分数:用分子除以分母,商是带分数的整数部分,余数是带分数分数部分的分子,分母不变。
8、 整数化成假分数:用指定的分母做分母,用整数与分母的积做分子。
9、 带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变。
10、 质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。
11 把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 如12=2×2×3
12、几个数公有的因数叫做这几个数的公因数。其中最大的一个,叫做它们的最大公因数。
13 互质:两个数的公因数只有1,这两个数叫做互质。
互质的规律:
(1) 相邻的自然数互质;
(2) 相邻的奇数都是互质数;
(3) 1和任何数互质;
(4) 两个不同的质数互质
(5) 2和任何奇数互质。
质数与互质的区别:质数是就一个数而言,而互质是指两个或两个以上的数之间的关系;这些数本身不一定是质数,但它们之间最大的公因数是1,如8和9.
14、 几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
15、 求最大公因数,最小公倍数的方法
关系
最大公因数
最小公倍数
倍数关系
16、 分子分母互质的分数叫最简分数,或者说分子分母的公因数只有的1的
分数是最简分数。
17、 约分:把一个分数的分子和分母同时除以公因数,分数值不变,这个过
程叫做约分。计算结果通常用最简分数表示。
18、 通分:把异分母分数分别化成同分母分数,叫通分。通常用最小公倍数
做分数的分母较简便。
19、 如何比较分数的大小:
分母相同时,分子大的分数大;
分子相同时,分母小的分数大;
分子分母都不同时,通分再比。
20、 分数基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分
数大小不变。
21、分数的意义两种解释:①把单位“1”平均分成4份,表示这样的3份。
②把3平均分成4份,表示这样的1份。
数学与交通:
1 相遇问题:
基本公式:一个人走:速度×时间=路程
两个人同时相对而行:速度和×相遇时间=两人共走路程
甲走的路程+乙走的路程=两人共走的路程
2、旅游费用:
①购票方案:根据人数的多少,价格的不同以及团体优惠人数的多少,合理选
择一种方案购票或几种方案结合起来购票。若只有A、B两种方案是,只要选择
其中一种价格便宜的就行。
②租车问题: 用列表法解决问题。两个原则:多用单价低的,少空座。
3、看图找关系:
①读懂图表中的有关信息,一定要分析横轴与纵轴分别表示的是什么。
②在速度与时间的关系上,线往上画,说明提速;与横轴平行,说明匀速行
驶;线往下画,说明减速。
③在时间与路程的问题上,线往上画,说明从某地出发;与横轴平行,说明
原地不动;线往下画,说明又从终点回到某地。
第四单元 分数加减法
1, 异分母分数加减法:先通分,化成同分母分数,然后按照同分母分数加减法法则进行计算。
2, 对计算结果的要求:能约分的要约成最简分数,是假分数要化成带分数。
3, 分数化成小数的方法:用分子除以分母,除不尽的保留两位小数。
4, 小数化成分数的方法:看小数部分有几位,就在1的后面加几个0做分母,去掉小数点做分子,能约分的要约分。
第五单元 图形的面积(二)
1, 求组合图形面积的方法:
(1) 分割法:将图形进行合理分割,形成基本图形,基本图形面积的和就是组合图形的面积。(和法)
(2) 添补法:将图形所缺部分进行添补,组成几个基本图形,基本图形面积-添补图形面积=组合图形面积。
2.不规则图形面积的估算:
(1)数格子的方法。
(2)把不规则图形看成近似的基本图形,估算出面积。
鸡兔同笼:
1, 列表法。
2, 假设法
3, 列方程
点阵中的规律:略
第六单元 可能性大小
1,用1表示事件一定发生,用0表示事件一定不会发生,用分数表示可能性的大小。
2,设计活动方案。
铺地砖:
1, 地面面积除以每块地砖面积=所铺地砖块数
2, 每平方米所需地砖块数乘以地面面积=所铺地砖块数
3, 列方程
4, 注意:转化单位,结果不是整块数用进一法取近似值
1、直接写出得数。(每小题0.5分,共6分)
0.125+7/8= 1/3+1/4= 1-1/9= 5/12+5/24= 12.5X0.1= 1-8/9-1/9=
9.8÷0.01= 3.4+13= 1.08+1/2= 5/8+1/4= 4/5-0.2-0.4= 2/5+5/6+3/5=
2、计算,能简算的要简算。(每小题2分,共8分)
5-3/7-4/7 8/9+1/3+2/3 1/2+3/5-11/20 1/2+(1/3-1/5)
3、解方程。(每小题2分,共6分)
① X+1/5-4/35=27
② 3X-6.75=33/4 ③ X-(1-3/7)=1/4
4、列式计算。(每小题3分,共6分)
① 65减去多少个2.5后还剩17.5?
② 一个数的一半与20的和是120,求这个数。
5、图形观察、计算。(每小题3分,共6分)
五、解决问题。(每小题5分,共30分)
1、小明的妈妈去超市买牛奶,有下面这样三种瓶装的牛奶,你认为买哪种瓶装的最合算?为什么?
① 250ml/2.00元 ② 500ml/4.60元 ③ 1L/9.00元
2、在一块长45米,宽28米的长方形地上铺一层4厘米厚的沙土,如果用一辆每次只能运3.5方沙土的汽车来运这些沙土,这辆汽车至少要运多少次?
3、一段长方体木材,长1.2米,如果锯短2分米,它的体积就减少40立方分米。求原来这段木材的体积。
4、东东家有一些鸡蛋,5个5的数,6个6的数,12个12的数,都多4个,已知这些鸡蛋在100-130个之间。你知道东东家有多少个鸡蛋吗?
关于“五年级数学有哪些内容”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
本文来自作者[同恩希]投稿,不代表赤玉坊立场,如若转载,请注明出处:https://www68.cn/bkqs/202412-14256.html
评论列表(4条)
我是赤玉坊的签约作者“同恩希”!
希望本篇文章《五年级数学有哪些内容》能对你有所帮助!
本站[赤玉坊]内容主要涵盖:国足,欧洲杯,世界杯,篮球,欧冠,亚冠,英超,足球,综合体育
本文概览:网上科普有关“五年级数学有哪些内容”话题很是火热,小编也是针对五年级数学有哪些内容寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。问题一...